PyFaults:用于堆叠故障筛选的Python工具

IF 5.2 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Applied Crystallography Pub Date : 2024-11-22 DOI:10.1107/S1600576724009956
Sinclair R. Combs, Annalise E. Maughan
{"title":"PyFaults:用于堆叠故障筛选的Python工具","authors":"Sinclair R. Combs,&nbsp;Annalise E. Maughan","doi":"10.1107/S1600576724009956","DOIUrl":null,"url":null,"abstract":"<p><i>PyFaults</i> is an open-source Python library designed to model stacking fault disorder in crystalline materials and qualitatively assess the characteristic selective broadening effects in powder X-ray diffraction (PXRD). Here, the main capabilities of <i>PyFaults</i> are presented, including unit cell and supercell model construction, PXRD pattern calculation, assessment against experimental PXRD, and methods for rapid screening of candidate models within a set of possible stacking vectors and fault occurrence probabilities. This program aims to serve as a computationally inexpensive tool for identifying and screening potential stacking fault models in materials with planar disorder. Three diverse case studies, involving GaN, Li<sub>2</sub>MnO<sub>3</sub> and Li<sub>3</sub>YCl<sub>6</sub>, are presented to illustrate the program functionality across a range of structure types and stacking fault modalities.</p>","PeriodicalId":48737,"journal":{"name":"Journal of Applied Crystallography","volume":"57 6","pages":"1996-2009"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PyFaults: a Python tool for stacking fault screening\",\"authors\":\"Sinclair R. Combs,&nbsp;Annalise E. Maughan\",\"doi\":\"10.1107/S1600576724009956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>PyFaults</i> is an open-source Python library designed to model stacking fault disorder in crystalline materials and qualitatively assess the characteristic selective broadening effects in powder X-ray diffraction (PXRD). Here, the main capabilities of <i>PyFaults</i> are presented, including unit cell and supercell model construction, PXRD pattern calculation, assessment against experimental PXRD, and methods for rapid screening of candidate models within a set of possible stacking vectors and fault occurrence probabilities. This program aims to serve as a computationally inexpensive tool for identifying and screening potential stacking fault models in materials with planar disorder. Three diverse case studies, involving GaN, Li<sub>2</sub>MnO<sub>3</sub> and Li<sub>3</sub>YCl<sub>6</sub>, are presented to illustrate the program functionality across a range of structure types and stacking fault modalities.</p>\",\"PeriodicalId\":48737,\"journal\":{\"name\":\"Journal of Applied Crystallography\",\"volume\":\"57 6\",\"pages\":\"1996-2009\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Crystallography\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1107/S1600576724009956\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1107/S1600576724009956","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

PyFaults是一个开源Python库,用于模拟晶体材料中的层错无序,并定性评估粉末x射线衍射(PXRD)中的特征选择性展宽效应。本文介绍了PyFaults的主要功能,包括单元胞和超级单体模型构建,PXRD模式计算,实验PXRD评估,以及在一组可能的堆叠向量和故障发生概率中快速筛选候选模型的方法。该程序旨在作为一种计算成本低廉的工具,用于识别和筛选具有平面无序的材料中的潜在层错模型。三个不同的案例研究,涉及氮化镓,Li2MnO3和Li3YCl6,展示了程序在一系列结构类型和堆叠故障模式中的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PyFaults: a Python tool for stacking fault screening

PyFaults is an open-source Python library designed to model stacking fault disorder in crystalline materials and qualitatively assess the characteristic selective broadening effects in powder X-ray diffraction (PXRD). Here, the main capabilities of PyFaults are presented, including unit cell and supercell model construction, PXRD pattern calculation, assessment against experimental PXRD, and methods for rapid screening of candidate models within a set of possible stacking vectors and fault occurrence probabilities. This program aims to serve as a computationally inexpensive tool for identifying and screening potential stacking fault models in materials with planar disorder. Three diverse case studies, involving GaN, Li2MnO3 and Li3YCl6, are presented to illustrate the program functionality across a range of structure types and stacking fault modalities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Crystallography
Journal of Applied Crystallography CHEMISTRY, MULTIDISCIPLINARYCRYSTALLOGRAPH-CRYSTALLOGRAPHY
CiteScore
7.80
自引率
3.30%
发文量
178
期刊介绍: Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.
期刊最新文献
Optimal operation guidelines for direct recovery of high-purity precursor from spent lithium-ion batteries: hybrid operation model of population balance equation and data-driven classifier Multimodal reconstruction of TbCo thin-film structure with Bayesian analysis of polarized neutron reflectivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1