含有1,2,4-三唑和吡啶的查尔酮衍生物:设计、合成和抗病毒活性。

IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED Molecular Diversity Pub Date : 2024-12-02 DOI:10.1007/s11030-024-11049-7
Hui Xin, Jiao Tian, Tianyu Deng, Qing Zhou, Yuhong Wang, Hong Fu, Haotao Pu, Wei Xue
{"title":"含有1,2,4-三唑和吡啶的查尔酮衍生物:设计、合成和抗病毒活性。","authors":"Hui Xin, Jiao Tian, Tianyu Deng, Qing Zhou, Yuhong Wang, Hong Fu, Haotao Pu, Wei Xue","doi":"10.1007/s11030-024-11049-7","DOIUrl":null,"url":null,"abstract":"<p><p>A series of chalcone derivatives containing 1,2,4-triazole and pyridine were designed and synthesized, and their antiviral activities against tobacco mosaic virus (TMV) were evaluated. Notably, S7 (EC<sub>50</sub> = 89.7 μg/mL) exhibited excellent curative activity against the TMV, which was superior to that of ningnanmycin (NNM: EC<sub>50</sub> = 201.7 μg/mL). Molecular docking showed that S7 exhibited satisfactory affinities for the TMV coat protein (TMV-CP), with four strong conventional hydrogen bonds with amino acid residues. Further, microscale thermophoresis (MST) showed that S7 (Kd = 0.5340 ± 0.2233 μmol/L) bound more strongly to TMV-CP than NNM (Kd = 5.1186 ± 1.9568 μmol/L). The results of chlorophyll content, malondialdehyde (MDA) content, and biological enzyme activity confirmed that S7 enhanced the disease resistance of tobacco plants by affecting the change of chlorophyll content, interfering with plant lipid peroxidation, and enhancing SOD activity in plants, respectively.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chalcone derivatives containing 1,2,4-triazole and pyridine moiety: design, synthesis, and antiviral activity.\",\"authors\":\"Hui Xin, Jiao Tian, Tianyu Deng, Qing Zhou, Yuhong Wang, Hong Fu, Haotao Pu, Wei Xue\",\"doi\":\"10.1007/s11030-024-11049-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A series of chalcone derivatives containing 1,2,4-triazole and pyridine were designed and synthesized, and their antiviral activities against tobacco mosaic virus (TMV) were evaluated. Notably, S7 (EC<sub>50</sub> = 89.7 μg/mL) exhibited excellent curative activity against the TMV, which was superior to that of ningnanmycin (NNM: EC<sub>50</sub> = 201.7 μg/mL). Molecular docking showed that S7 exhibited satisfactory affinities for the TMV coat protein (TMV-CP), with four strong conventional hydrogen bonds with amino acid residues. Further, microscale thermophoresis (MST) showed that S7 (Kd = 0.5340 ± 0.2233 μmol/L) bound more strongly to TMV-CP than NNM (Kd = 5.1186 ± 1.9568 μmol/L). The results of chlorophyll content, malondialdehyde (MDA) content, and biological enzyme activity confirmed that S7 enhanced the disease resistance of tobacco plants by affecting the change of chlorophyll content, interfering with plant lipid peroxidation, and enhancing SOD activity in plants, respectively.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-024-11049-7\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-11049-7","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

设计合成了一系列含有1,2,4-三唑和吡啶的查尔酮衍生物,并对其抗烟草花叶病毒(TMV)的活性进行了评价。值得注意的是,S7 (EC50 = 89.7 μg/mL)对TMV表现出良好的治疗活性,优于宁南霉素(NNM: EC50 = 201.7 μg/mL)。分子对接表明,S7与TMV外壳蛋白(TMV- cp)具有良好的亲和性,与氨基酸残基形成4个强常规氢键。微尺度热电泳(MST)结果表明,S7 (Kd = 0.5340±0.2233 μmol/L)与TMV-CP的结合比NNM (Kd = 5.1186±1.9568 μmol/L)强。叶绿素含量、丙二醛(MDA)含量和生物酶活性的测定结果证实,S7分别通过影响叶绿素含量的变化、干扰植物脂质过氧化和提高植物SOD活性来增强烟草植株的抗病性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chalcone derivatives containing 1,2,4-triazole and pyridine moiety: design, synthesis, and antiviral activity.

A series of chalcone derivatives containing 1,2,4-triazole and pyridine were designed and synthesized, and their antiviral activities against tobacco mosaic virus (TMV) were evaluated. Notably, S7 (EC50 = 89.7 μg/mL) exhibited excellent curative activity against the TMV, which was superior to that of ningnanmycin (NNM: EC50 = 201.7 μg/mL). Molecular docking showed that S7 exhibited satisfactory affinities for the TMV coat protein (TMV-CP), with four strong conventional hydrogen bonds with amino acid residues. Further, microscale thermophoresis (MST) showed that S7 (Kd = 0.5340 ± 0.2233 μmol/L) bound more strongly to TMV-CP than NNM (Kd = 5.1186 ± 1.9568 μmol/L). The results of chlorophyll content, malondialdehyde (MDA) content, and biological enzyme activity confirmed that S7 enhanced the disease resistance of tobacco plants by affecting the change of chlorophyll content, interfering with plant lipid peroxidation, and enhancing SOD activity in plants, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
期刊最新文献
Structure-based inhibition of acetylcholinesterase and butyrylcholinesterase with 2-Aryl-6-carboxamide benzoxazole derivatives: synthesis, enzymatic assay, and in silico studies. Reactivity of amino acids and short peptide sequences: identifying bioactive compounds via DFT calculations. Sinefungin analogs targeting VP39 methyltransferase as potential anti-monkeypox therapeutics: a multi-step computational approach. Synthetic account on indoles and their analogues as potential anti-plasmodial agents. Development of novel nitric oxide production inhibitors based on the 7H-pyrrolo[2,3-d]pyrimidine scaffold.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1