{"title":"利用黄素依赖酶研究氧相关挑战的工具。","authors":"Ariadna Pié Porta, Elif Erdem, John M. Woodley","doi":"10.1016/j.abb.2024.110246","DOIUrl":null,"url":null,"abstract":"<div><div>Enzymes have multiple applications in medicine but during the past decades interest in the application of enzymes as (bio)catalysts to produce a wide range of valuable molecules in various industries has increased. Many chemical compounds (from pharmaceuticals to bulk commodities) can be produced by a series of enzymatically-catalysed chemical steps, and in many cases one of these steps is an oxidation.</div><div>The use of molecular oxygen as an oxidising agent in biocatalytic processes is a double-edged approach. From one side, the oxygen is supplied to the reactor in the form of air bubbling, which is cheap, highly available and non-toxic. From the other side, bubbling air into the reaction media creates a gas-liquid interface which adsorbs enzymes and compromises their stability. Moreover, the oxygen is quite insoluble in water, which often results in oxygen-limited reactions.</div><div>These aspects are the main limiting factors for the stability and kinetics of enzymes that perform oxidative biocatalysis and prevent the reaction from happening at a rate that is high/competitive enough for industrial feasibility. Therefore, we need systems to mimic and understand better these factors to try and mitigate their effects upon scale-up.</div><div>In this review, we present two complementary systems to study these factors: one apparatus that ensures a constant gas-liquid interface and another one that maintains a constant oxygen partial pressure. Both can provide highly valuable information regarding the maximum rate of reaction and about the deactivation profiles of enzymes in the presence of bubbles.</div></div>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":"764 ","pages":"Article 110246"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tools to investigate oxygen-related challenges with flavin-dependent enzymes\",\"authors\":\"Ariadna Pié Porta, Elif Erdem, John M. Woodley\",\"doi\":\"10.1016/j.abb.2024.110246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Enzymes have multiple applications in medicine but during the past decades interest in the application of enzymes as (bio)catalysts to produce a wide range of valuable molecules in various industries has increased. Many chemical compounds (from pharmaceuticals to bulk commodities) can be produced by a series of enzymatically-catalysed chemical steps, and in many cases one of these steps is an oxidation.</div><div>The use of molecular oxygen as an oxidising agent in biocatalytic processes is a double-edged approach. From one side, the oxygen is supplied to the reactor in the form of air bubbling, which is cheap, highly available and non-toxic. From the other side, bubbling air into the reaction media creates a gas-liquid interface which adsorbs enzymes and compromises their stability. Moreover, the oxygen is quite insoluble in water, which often results in oxygen-limited reactions.</div><div>These aspects are the main limiting factors for the stability and kinetics of enzymes that perform oxidative biocatalysis and prevent the reaction from happening at a rate that is high/competitive enough for industrial feasibility. Therefore, we need systems to mimic and understand better these factors to try and mitigate their effects upon scale-up.</div><div>In this review, we present two complementary systems to study these factors: one apparatus that ensures a constant gas-liquid interface and another one that maintains a constant oxygen partial pressure. Both can provide highly valuable information regarding the maximum rate of reaction and about the deactivation profiles of enzymes in the presence of bubbles.</div></div>\",\"PeriodicalId\":8174,\"journal\":{\"name\":\"Archives of biochemistry and biophysics\",\"volume\":\"764 \",\"pages\":\"Article 110246\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of biochemistry and biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003986124003680\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of biochemistry and biophysics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003986124003680","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Tools to investigate oxygen-related challenges with flavin-dependent enzymes
Enzymes have multiple applications in medicine but during the past decades interest in the application of enzymes as (bio)catalysts to produce a wide range of valuable molecules in various industries has increased. Many chemical compounds (from pharmaceuticals to bulk commodities) can be produced by a series of enzymatically-catalysed chemical steps, and in many cases one of these steps is an oxidation.
The use of molecular oxygen as an oxidising agent in biocatalytic processes is a double-edged approach. From one side, the oxygen is supplied to the reactor in the form of air bubbling, which is cheap, highly available and non-toxic. From the other side, bubbling air into the reaction media creates a gas-liquid interface which adsorbs enzymes and compromises their stability. Moreover, the oxygen is quite insoluble in water, which often results in oxygen-limited reactions.
These aspects are the main limiting factors for the stability and kinetics of enzymes that perform oxidative biocatalysis and prevent the reaction from happening at a rate that is high/competitive enough for industrial feasibility. Therefore, we need systems to mimic and understand better these factors to try and mitigate their effects upon scale-up.
In this review, we present two complementary systems to study these factors: one apparatus that ensures a constant gas-liquid interface and another one that maintains a constant oxygen partial pressure. Both can provide highly valuable information regarding the maximum rate of reaction and about the deactivation profiles of enzymes in the presence of bubbles.
期刊介绍:
Archives of Biochemistry and Biophysics publishes quality original articles and reviews in the developing areas of biochemistry and biophysics.
Research Areas Include:
• Enzyme and protein structure, function, regulation. Folding, turnover, and post-translational processing
• Biological oxidations, free radical reactions, redox signaling, oxygenases, P450 reactions
• Signal transduction, receptors, membrane transport, intracellular signals. Cellular and integrated metabolism.