阿特唑单抗生物仿制药的细胞系开发和生物反应器工艺优化。

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biotechnology and applied biochemistry Pub Date : 2024-12-02 DOI:10.1002/bab.2704
Ayca Zeybek Kuyucu, Dogu Sayili, Ridvan Orkut, Olcay Mert, İbrahim Oguzhan Tarman, Busra Lulaci, Ali Mert Sencer, Asli Kurden Pekmezci, Mehmet Ender Avci, Sibel Kalyoncu, Mehmet Inan
{"title":"阿特唑单抗生物仿制药的细胞系开发和生物反应器工艺优化。","authors":"Ayca Zeybek Kuyucu, Dogu Sayili, Ridvan Orkut, Olcay Mert, İbrahim Oguzhan Tarman, Busra Lulaci, Ali Mert Sencer, Asli Kurden Pekmezci, Mehmet Ender Avci, Sibel Kalyoncu, Mehmet Inan","doi":"10.1002/bab.2704","DOIUrl":null,"url":null,"abstract":"<p><p>Checkpoint inhibitors are widely recognized immunotherapeutic drugs, known for their effectiveness in treating various cancers. Atezolizumab, targeting the immune checkpoint programmed death-ligand 1, is successfully used to treat several types of cancers. Atezolizumab is a potential biosimilar candidate due to its huge success in the clinic but there is no literature on its production process in mammalian cells. In this study, we generated a monoclonal cell line derived from recombinant Chinese hamster ovary DG44 cells to produce atezolizumab. The selected single clone was employed for media screening and process development. Following production in a 7-L bioreactor, atezolizumab was purified using a three-step chromatographic method. Finally, the purified atezolizumab was characterized and compared with commercial atezolizumab (Tecentriq) through several chromatographic and kinetics analyses.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cell line development and bioreactor process optimization for an atezolizumab biosimilar.\",\"authors\":\"Ayca Zeybek Kuyucu, Dogu Sayili, Ridvan Orkut, Olcay Mert, İbrahim Oguzhan Tarman, Busra Lulaci, Ali Mert Sencer, Asli Kurden Pekmezci, Mehmet Ender Avci, Sibel Kalyoncu, Mehmet Inan\",\"doi\":\"10.1002/bab.2704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Checkpoint inhibitors are widely recognized immunotherapeutic drugs, known for their effectiveness in treating various cancers. Atezolizumab, targeting the immune checkpoint programmed death-ligand 1, is successfully used to treat several types of cancers. Atezolizumab is a potential biosimilar candidate due to its huge success in the clinic but there is no literature on its production process in mammalian cells. In this study, we generated a monoclonal cell line derived from recombinant Chinese hamster ovary DG44 cells to produce atezolizumab. The selected single clone was employed for media screening and process development. Following production in a 7-L bioreactor, atezolizumab was purified using a three-step chromatographic method. Finally, the purified atezolizumab was characterized and compared with commercial atezolizumab (Tecentriq) through several chromatographic and kinetics analyses.</p>\",\"PeriodicalId\":9274,\"journal\":{\"name\":\"Biotechnology and applied biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and applied biochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/bab.2704\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and applied biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bab.2704","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

检查点抑制剂是一种被广泛认可的免疫治疗药物,以其治疗各种癌症的有效性而闻名。Atezolizumab靶向免疫检查点程序性死亡配体1,已成功用于治疗几种类型的癌症。Atezolizumab是一种潜在的生物仿制药候选药物,因为它在临床取得了巨大的成功,但没有关于其在哺乳动物细胞中的生产过程的文献。在这项研究中,我们从重组中国仓鼠卵巢DG44细胞中提取了一株单克隆细胞系来生产atezolizumab。选择的单克隆进行培养基筛选和工艺开发。在7-L生物反应器中生产后,使用三步色谱法纯化atezolizumab。最后,通过色谱和动力学分析对纯化的atezolizumab进行了表征,并与市售的atezolizumab (Tecentriq)进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cell line development and bioreactor process optimization for an atezolizumab biosimilar.

Checkpoint inhibitors are widely recognized immunotherapeutic drugs, known for their effectiveness in treating various cancers. Atezolizumab, targeting the immune checkpoint programmed death-ligand 1, is successfully used to treat several types of cancers. Atezolizumab is a potential biosimilar candidate due to its huge success in the clinic but there is no literature on its production process in mammalian cells. In this study, we generated a monoclonal cell line derived from recombinant Chinese hamster ovary DG44 cells to produce atezolizumab. The selected single clone was employed for media screening and process development. Following production in a 7-L bioreactor, atezolizumab was purified using a three-step chromatographic method. Finally, the purified atezolizumab was characterized and compared with commercial atezolizumab (Tecentriq) through several chromatographic and kinetics analyses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology and applied biochemistry
Biotechnology and applied biochemistry 工程技术-生化与分子生物学
CiteScore
6.00
自引率
7.10%
发文量
117
审稿时长
3 months
期刊介绍: Published since 1979, Biotechnology and Applied Biochemistry is dedicated to the rapid publication of high quality, significant research at the interface between life sciences and their technological exploitation. The Editors will consider papers for publication based on their novelty and impact as well as their contribution to the advancement of medical biotechnology and industrial biotechnology, covering cutting-edge research in synthetic biology, systems biology, metabolic engineering, bioengineering, biomaterials, biosensing, and nano-biotechnology.
期刊最新文献
Artificial Neural Network: Optimization and Characterization of α-Amylase Production from Bacillus velezensis Species. Mn3O4 Tetrahedral with Carbonyldiimidazole Nanoflower Deposition on Laser-Scribed Graphene for Selective Bio-Capture. Issue Information Deciphering the Interplay of the PD-L1/MALT1/miR-200a Axis During Lung Cancer Development. Advancing PLP Biosynthesis: Enhanced Stability and Activity of EcPdxK via LXTE-600 Immobilization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1