Robert A Brinzer, Jennifer R McIntyre, Collette Britton, Roz Laing
{"title":"寄生线虫扭曲血蜱缺乏钼辅助因子合成,导致亚硫酸盐敏感性和体外致死。","authors":"Robert A Brinzer, Jennifer R McIntyre, Collette Britton, Roz Laing","doi":"10.1016/j.ijpara.2024.11.004","DOIUrl":null,"url":null,"abstract":"<p><p>Sulphite oxidase has an essential role in detoxifying environmental and endogenously generated sulphite into sulphate and requires the molybdenum cofactor (Moco) to function. Until recently it was believed that the synthesis pathway for Moco was so important for survival that it was conserved in all multicellular animals. Here we report the use of comparative genomics to identify the absence of the first enzyme involved in Moco synthesis in Haemonchus contortus, a highly pathogenic and economically important helminth of livestock that, similar to many parasitic nematode species, has proved difficult to maintain in vitro. We show that Moco deficiency in Haemonchus leads to a high sensitivity to environmental sulphite and limits the ability to maintain the early parasitic larval stages in vitro. Analogous losses in Moco synthesis in other recently sequenced nematode species are also identified. These findings may lead to improved culture methods for parasitic nematodes and to novel approaches for their control.</p>","PeriodicalId":13725,"journal":{"name":"International journal for parasitology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The parasitic nematode Haemonchus contortus lacks molybdenum cofactor synthesis, leading to sulphite sensitivity and lethality in vitro.\",\"authors\":\"Robert A Brinzer, Jennifer R McIntyre, Collette Britton, Roz Laing\",\"doi\":\"10.1016/j.ijpara.2024.11.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sulphite oxidase has an essential role in detoxifying environmental and endogenously generated sulphite into sulphate and requires the molybdenum cofactor (Moco) to function. Until recently it was believed that the synthesis pathway for Moco was so important for survival that it was conserved in all multicellular animals. Here we report the use of comparative genomics to identify the absence of the first enzyme involved in Moco synthesis in Haemonchus contortus, a highly pathogenic and economically important helminth of livestock that, similar to many parasitic nematode species, has proved difficult to maintain in vitro. We show that Moco deficiency in Haemonchus leads to a high sensitivity to environmental sulphite and limits the ability to maintain the early parasitic larval stages in vitro. Analogous losses in Moco synthesis in other recently sequenced nematode species are also identified. These findings may lead to improved culture methods for parasitic nematodes and to novel approaches for their control.</p>\",\"PeriodicalId\":13725,\"journal\":{\"name\":\"International journal for parasitology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal for parasitology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijpara.2024.11.004\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal for parasitology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ijpara.2024.11.004","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
The parasitic nematode Haemonchus contortus lacks molybdenum cofactor synthesis, leading to sulphite sensitivity and lethality in vitro.
Sulphite oxidase has an essential role in detoxifying environmental and endogenously generated sulphite into sulphate and requires the molybdenum cofactor (Moco) to function. Until recently it was believed that the synthesis pathway for Moco was so important for survival that it was conserved in all multicellular animals. Here we report the use of comparative genomics to identify the absence of the first enzyme involved in Moco synthesis in Haemonchus contortus, a highly pathogenic and economically important helminth of livestock that, similar to many parasitic nematode species, has proved difficult to maintain in vitro. We show that Moco deficiency in Haemonchus leads to a high sensitivity to environmental sulphite and limits the ability to maintain the early parasitic larval stages in vitro. Analogous losses in Moco synthesis in other recently sequenced nematode species are also identified. These findings may lead to improved culture methods for parasitic nematodes and to novel approaches for their control.
期刊介绍:
International Journal for Parasitology offers authors the option to sponsor nonsubscriber access to their articles on Elsevier electronic publishing platforms. For more information please view our Sponsored Articles page. The International Journal for Parasitology publishes the results of original research in all aspects of basic and applied parasitology, including all the fields covered by its Specialist Editors, and ranging from parasites and host-parasite relationships of intrinsic biological interest to those of social and economic importance in human and veterinary medicine and agriculture.