精神分裂症患者壳核中calretinin免疫阳性神经元密度较低。

IF 1.8 3区 医学 Q2 ANATOMY & MORPHOLOGY Journal of Anatomy Pub Date : 2024-12-03 DOI:10.1111/joa.14180
Paz Kelmer, Paulina Hoppa, Erzsébet Frank, Teadora Tyler, Istvan Adorjan
{"title":"精神分裂症患者壳核中calretinin免疫阳性神经元密度较低。","authors":"Paz Kelmer, Paulina Hoppa, Erzsébet Frank, Teadora Tyler, Istvan Adorjan","doi":"10.1111/joa.14180","DOIUrl":null,"url":null,"abstract":"<p><p>Schizophrenia (SCH) is a chronic and serious mental illness which puts an enormous burden on the individual, families, and society. It is well established that altered dopamine signaling and excitatory-inhibitory imbalance contributes to the symptoms of schizophrenia. Recent neuroimaging and histological studies suggest that the striatum is a key area involved in SCH, however, our knowledge of how specific cell neuronal subtypes of certain subcortical structures may be impaired is incomplete. To this date, no detailed investigation of the putamen has ever been published regarding neuroanatomical changes in SCH. Here we tested whether the density of calretinin immunopositive (CR+) neurons and DARPP32+ neurons is altered in the putamen of patients with SCH. We used immunohistochemistry to reveal CR+ and DARPP32+ neurons in six samples from patients with SCH and six age- and gender-matched control subjects. In line with previous studies, we detected small, medium, and large CR+ neurons. The density of small CR+ neurons was significantly lower in SCH (p = 0.0076). Medium and large CR+ and DARPP32+ neuronal density was not significantly different between groups. The present study substantiates previous results showing significantly lower density of small CR+ interneurons in the caudate nucleus in samples from patients with schizophrenia, highlighting the involvement of the striatum in the disorder. Our results warrant further studies focusing on the role of CR+ interneurons in the regulation of information processing in the fronto-striatal networks, evidently key structures in schizophrenia.</p>","PeriodicalId":14971,"journal":{"name":"Journal of Anatomy","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lower density of calretinin-immunopositive neurons in the putamen of subjects with schizophrenia.\",\"authors\":\"Paz Kelmer, Paulina Hoppa, Erzsébet Frank, Teadora Tyler, Istvan Adorjan\",\"doi\":\"10.1111/joa.14180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Schizophrenia (SCH) is a chronic and serious mental illness which puts an enormous burden on the individual, families, and society. It is well established that altered dopamine signaling and excitatory-inhibitory imbalance contributes to the symptoms of schizophrenia. Recent neuroimaging and histological studies suggest that the striatum is a key area involved in SCH, however, our knowledge of how specific cell neuronal subtypes of certain subcortical structures may be impaired is incomplete. To this date, no detailed investigation of the putamen has ever been published regarding neuroanatomical changes in SCH. Here we tested whether the density of calretinin immunopositive (CR+) neurons and DARPP32+ neurons is altered in the putamen of patients with SCH. We used immunohistochemistry to reveal CR+ and DARPP32+ neurons in six samples from patients with SCH and six age- and gender-matched control subjects. In line with previous studies, we detected small, medium, and large CR+ neurons. The density of small CR+ neurons was significantly lower in SCH (p = 0.0076). Medium and large CR+ and DARPP32+ neuronal density was not significantly different between groups. The present study substantiates previous results showing significantly lower density of small CR+ interneurons in the caudate nucleus in samples from patients with schizophrenia, highlighting the involvement of the striatum in the disorder. Our results warrant further studies focusing on the role of CR+ interneurons in the regulation of information processing in the fronto-striatal networks, evidently key structures in schizophrenia.</p>\",\"PeriodicalId\":14971,\"journal\":{\"name\":\"Journal of Anatomy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Anatomy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/joa.14180\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Anatomy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/joa.14180","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

精神分裂症是一种慢性严重精神疾病,给个人、家庭和社会带来了巨大的负担。多巴胺信号的改变和兴奋-抑制失衡有助于精神分裂症的症状,这是公认的。最近的神经影像学和组织学研究表明,纹状体是参与SCH的关键区域,然而,我们对某些皮层下结构的特定细胞神经元亚型如何受损的了解尚不完整。到目前为止,还没有关于SCH患者壳核神经解剖学变化的详细研究发表。在这里,我们测试了SCH患者壳核中calretinin免疫阳性(CR+)神经元和DARPP32+神经元的密度是否改变。我们使用免疫组织化学方法揭示了来自SCH患者和6名年龄和性别匹配的对照组的6个样本中的CR+和DARPP32+神经元。与之前的研究一致,我们检测了小、中、大的CR+神经元。SCH组CR+小神经元密度明显降低(p = 0.0076)。中、大CR+和DARPP32+神经元密度组间差异无统计学意义。目前的研究证实了先前的结果,即在精神分裂症患者的样本中,尾状核中小CR+中间神经元的密度显著降低,突出了纹状体在该疾病中的作用。我们的结果值得进一步研究CR+中间神经元在调节额纹状体网络信息加工中的作用,额纹状体网络显然是精神分裂症的关键结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lower density of calretinin-immunopositive neurons in the putamen of subjects with schizophrenia.

Schizophrenia (SCH) is a chronic and serious mental illness which puts an enormous burden on the individual, families, and society. It is well established that altered dopamine signaling and excitatory-inhibitory imbalance contributes to the symptoms of schizophrenia. Recent neuroimaging and histological studies suggest that the striatum is a key area involved in SCH, however, our knowledge of how specific cell neuronal subtypes of certain subcortical structures may be impaired is incomplete. To this date, no detailed investigation of the putamen has ever been published regarding neuroanatomical changes in SCH. Here we tested whether the density of calretinin immunopositive (CR+) neurons and DARPP32+ neurons is altered in the putamen of patients with SCH. We used immunohistochemistry to reveal CR+ and DARPP32+ neurons in six samples from patients with SCH and six age- and gender-matched control subjects. In line with previous studies, we detected small, medium, and large CR+ neurons. The density of small CR+ neurons was significantly lower in SCH (p = 0.0076). Medium and large CR+ and DARPP32+ neuronal density was not significantly different between groups. The present study substantiates previous results showing significantly lower density of small CR+ interneurons in the caudate nucleus in samples from patients with schizophrenia, highlighting the involvement of the striatum in the disorder. Our results warrant further studies focusing on the role of CR+ interneurons in the regulation of information processing in the fronto-striatal networks, evidently key structures in schizophrenia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Anatomy
Journal of Anatomy 医学-解剖学与形态学
CiteScore
4.80
自引率
8.30%
发文量
183
审稿时长
4-8 weeks
期刊介绍: Journal of Anatomy is an international peer-reviewed journal sponsored by the Anatomical Society. The journal publishes original papers, invited review articles and book reviews. Its main focus is to understand anatomy through an analysis of structure, function, development and evolution. Priority will be given to studies of that clearly articulate their relevance to the anatomical community. Focal areas include: experimental studies, contributions based on molecular and cell biology and on the application of modern imaging techniques and papers with novel methods or synthetic perspective on an anatomical system. Studies that are essentially descriptive anatomy are appropriate only if they communicate clearly a broader functional or evolutionary significance. You must clearly state the broader implications of your work in the abstract. We particularly welcome submissions in the following areas: Cell biology and tissue architecture Comparative functional morphology Developmental biology Evolutionary developmental biology Evolutionary morphology Functional human anatomy Integrative vertebrate paleontology Methodological innovations in anatomical research Musculoskeletal system Neuroanatomy and neurodegeneration Significant advances in anatomical education.
期刊最新文献
Skin development in the gray short-tailed opossum (Monodelphis domestica)-From skin respiration to thermoregulation. A new distal fibular fragment of Homo floresiensis and the first quantitative comparative analysis of proximal and distal fibular morphology in this species. Palaeobiology and osteohistology of South African sauropodomorph dinosaurs. Issue Information Issue Cover (March 2025)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1