Rachel A. Racicot, Mickaël J. Mourlam, Eric G. Ekdale, Abigail Glass, Lori Marino, Mark D. Uhen
{"title":"鲸鱼(鲸目动物)内耳解剖结构的变化揭示了“专门的”高频听力敏感性的早期进化。","authors":"Rachel A. Racicot, Mickaël J. Mourlam, Eric G. Ekdale, Abigail Glass, Lori Marino, Mark D. Uhen","doi":"10.1111/joa.14176","DOIUrl":null,"url":null,"abstract":"<p>As fully aquatic mammals, hearing is arguably the most important sensory component of cetaceans. Increasingly, researchers have been harnessing computed tomography (CT) to investigate the details of the inner ear as they can provide clues to the hearing abilities of whales. We use microCT scans of a broad sampling of the ear bones (periotics) of primarily toothed whales (Odontoceti) to investigate the inner ear bony labyrinth shape and reconstruct hearing sensitivities among these cetaceans, including several taxa about which little is currently known. We find support for sensitivity to the lower frequency spectrum in the archaeocete <i>Zygorhiza kochii</i> and an early toothed mysticete cf. <i>Aetiocetus</i>. Oligocene odontocetes (including one from our novel dataset), stem delphinidans, and two additional species of the long-snouted eurhinodelphinids are found to have been able to hear within the narrow-band high-frequency spectrum (NBHF), which is thought to be a specialized form of hearing that evolved convergently multiple different times in extant groups to avoid predation by macroraptorial predators. Our results thus indicate that NBHF evolved as early as the Oligocene and certainly in stem delphinidans by the early Miocene, and thus may be an ancestral characteristic rather than a more recent innovation in select groups.</p>","PeriodicalId":14971,"journal":{"name":"Journal of Anatomy","volume":"246 3","pages":"363-375"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/joa.14176","citationCount":"0","resultStr":"{\"title\":\"Variation in whale (Cetacea) inner ear anatomy reveals the early evolution of “specialized” high-frequency hearing sensitivity\",\"authors\":\"Rachel A. Racicot, Mickaël J. Mourlam, Eric G. Ekdale, Abigail Glass, Lori Marino, Mark D. Uhen\",\"doi\":\"10.1111/joa.14176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As fully aquatic mammals, hearing is arguably the most important sensory component of cetaceans. Increasingly, researchers have been harnessing computed tomography (CT) to investigate the details of the inner ear as they can provide clues to the hearing abilities of whales. We use microCT scans of a broad sampling of the ear bones (periotics) of primarily toothed whales (Odontoceti) to investigate the inner ear bony labyrinth shape and reconstruct hearing sensitivities among these cetaceans, including several taxa about which little is currently known. We find support for sensitivity to the lower frequency spectrum in the archaeocete <i>Zygorhiza kochii</i> and an early toothed mysticete cf. <i>Aetiocetus</i>. Oligocene odontocetes (including one from our novel dataset), stem delphinidans, and two additional species of the long-snouted eurhinodelphinids are found to have been able to hear within the narrow-band high-frequency spectrum (NBHF), which is thought to be a specialized form of hearing that evolved convergently multiple different times in extant groups to avoid predation by macroraptorial predators. Our results thus indicate that NBHF evolved as early as the Oligocene and certainly in stem delphinidans by the early Miocene, and thus may be an ancestral characteristic rather than a more recent innovation in select groups.</p>\",\"PeriodicalId\":14971,\"journal\":{\"name\":\"Journal of Anatomy\",\"volume\":\"246 3\",\"pages\":\"363-375\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/joa.14176\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Anatomy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/joa.14176\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Anatomy","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/joa.14176","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
Variation in whale (Cetacea) inner ear anatomy reveals the early evolution of “specialized” high-frequency hearing sensitivity
As fully aquatic mammals, hearing is arguably the most important sensory component of cetaceans. Increasingly, researchers have been harnessing computed tomography (CT) to investigate the details of the inner ear as they can provide clues to the hearing abilities of whales. We use microCT scans of a broad sampling of the ear bones (periotics) of primarily toothed whales (Odontoceti) to investigate the inner ear bony labyrinth shape and reconstruct hearing sensitivities among these cetaceans, including several taxa about which little is currently known. We find support for sensitivity to the lower frequency spectrum in the archaeocete Zygorhiza kochii and an early toothed mysticete cf. Aetiocetus. Oligocene odontocetes (including one from our novel dataset), stem delphinidans, and two additional species of the long-snouted eurhinodelphinids are found to have been able to hear within the narrow-band high-frequency spectrum (NBHF), which is thought to be a specialized form of hearing that evolved convergently multiple different times in extant groups to avoid predation by macroraptorial predators. Our results thus indicate that NBHF evolved as early as the Oligocene and certainly in stem delphinidans by the early Miocene, and thus may be an ancestral characteristic rather than a more recent innovation in select groups.
期刊介绍:
Journal of Anatomy is an international peer-reviewed journal sponsored by the Anatomical Society. The journal publishes original papers, invited review articles and book reviews. Its main focus is to understand anatomy through an analysis of structure, function, development and evolution. Priority will be given to studies of that clearly articulate their relevance to the anatomical community. Focal areas include: experimental studies, contributions based on molecular and cell biology and on the application of modern imaging techniques and papers with novel methods or synthetic perspective on an anatomical system.
Studies that are essentially descriptive anatomy are appropriate only if they communicate clearly a broader functional or evolutionary significance. You must clearly state the broader implications of your work in the abstract.
We particularly welcome submissions in the following areas:
Cell biology and tissue architecture
Comparative functional morphology
Developmental biology
Evolutionary developmental biology
Evolutionary morphology
Functional human anatomy
Integrative vertebrate paleontology
Methodological innovations in anatomical research
Musculoskeletal system
Neuroanatomy and neurodegeneration
Significant advances in anatomical education.