{"title":"可持续分析物检测综述:生物传感器技术的仿生启示。","authors":"Pratistha Bhagat, Lata Sheo Bachan Upadhyay","doi":"10.1016/j.jbiotec.2024.11.015","DOIUrl":null,"url":null,"abstract":"<p><p>The branch of biomimetics has witnessed a profound impact on the field of biosensor technology, reflected in sustainable analyte detection. A vast array of biosensor platforms with improved/upgraded performance have been developed and reported. No wonder the motivation from the field of biomimetics has a huge impact on generating detection systems with escalated degrees of manipulation and tunability at different levels. More recently, biomimetic biosensor technology has found potential in constructing bio-inspired materials such as aptamers, MIPs, nanozymes, DNAzymes, Synzymes, etc. to be integrated with biosensor fabrication. The establishment of a sensing setup is not limited to the bioreceptor fabrication; the construction of transducing element using biomimetic material have been reported too. Moreover, to serve a biosensing of target analyte from a fatal diseased sample different biomimetic architectures can be designed that mimic in-vivo microenvironmental surroundings to get an exact microenvironment equivalent to natural conditions leading towards designing of a precise treatment strategy. This research area is ever-evolving as there is a scope for upgradation and refinement due to advancing technologies including nanotechnology, biomimetic nanomaterials, microfluidics, optical sensors, etc. This review is an attempt to comprehend and juxtapose the very primary innovations in the field of biomimetic biosensor technology to realize its comprehensive and wide-range scope and possibilities.</p>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":" ","pages":"51-65"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review towards sustainable analyte detection: Biomimetic inspiration in biosensor technology.\",\"authors\":\"Pratistha Bhagat, Lata Sheo Bachan Upadhyay\",\"doi\":\"10.1016/j.jbiotec.2024.11.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The branch of biomimetics has witnessed a profound impact on the field of biosensor technology, reflected in sustainable analyte detection. A vast array of biosensor platforms with improved/upgraded performance have been developed and reported. No wonder the motivation from the field of biomimetics has a huge impact on generating detection systems with escalated degrees of manipulation and tunability at different levels. More recently, biomimetic biosensor technology has found potential in constructing bio-inspired materials such as aptamers, MIPs, nanozymes, DNAzymes, Synzymes, etc. to be integrated with biosensor fabrication. The establishment of a sensing setup is not limited to the bioreceptor fabrication; the construction of transducing element using biomimetic material have been reported too. Moreover, to serve a biosensing of target analyte from a fatal diseased sample different biomimetic architectures can be designed that mimic in-vivo microenvironmental surroundings to get an exact microenvironment equivalent to natural conditions leading towards designing of a precise treatment strategy. This research area is ever-evolving as there is a scope for upgradation and refinement due to advancing technologies including nanotechnology, biomimetic nanomaterials, microfluidics, optical sensors, etc. This review is an attempt to comprehend and juxtapose the very primary innovations in the field of biomimetic biosensor technology to realize its comprehensive and wide-range scope and possibilities.</p>\",\"PeriodicalId\":15153,\"journal\":{\"name\":\"Journal of biotechnology\",\"volume\":\" \",\"pages\":\"51-65\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbiotec.2024.11.015\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jbiotec.2024.11.015","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
A review towards sustainable analyte detection: Biomimetic inspiration in biosensor technology.
The branch of biomimetics has witnessed a profound impact on the field of biosensor technology, reflected in sustainable analyte detection. A vast array of biosensor platforms with improved/upgraded performance have been developed and reported. No wonder the motivation from the field of biomimetics has a huge impact on generating detection systems with escalated degrees of manipulation and tunability at different levels. More recently, biomimetic biosensor technology has found potential in constructing bio-inspired materials such as aptamers, MIPs, nanozymes, DNAzymes, Synzymes, etc. to be integrated with biosensor fabrication. The establishment of a sensing setup is not limited to the bioreceptor fabrication; the construction of transducing element using biomimetic material have been reported too. Moreover, to serve a biosensing of target analyte from a fatal diseased sample different biomimetic architectures can be designed that mimic in-vivo microenvironmental surroundings to get an exact microenvironment equivalent to natural conditions leading towards designing of a precise treatment strategy. This research area is ever-evolving as there is a scope for upgradation and refinement due to advancing technologies including nanotechnology, biomimetic nanomaterials, microfluidics, optical sensors, etc. This review is an attempt to comprehend and juxtapose the very primary innovations in the field of biomimetic biosensor technology to realize its comprehensive and wide-range scope and possibilities.
期刊介绍:
The Journal of Biotechnology has an open access mirror journal, the Journal of Biotechnology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal provides a medium for the rapid publication of both full-length articles and short communications on novel and innovative aspects of biotechnology. The Journal will accept papers ranging from genetic or molecular biological positions to those covering biochemical, chemical or bioprocess engineering aspects as well as computer application of new software concepts, provided that in each case the material is directly relevant to biotechnological systems. Papers presenting information of a multidisciplinary nature that would not be suitable for publication in a journal devoted to a single discipline, are particularly welcome.