Zhiyuan Han, Cuicui Zhang, Keling Cheng, Yunfang Chen, Zhiqin Tang, Lewen Chen, Jun Ni, Zhiyong Wang
{"title":"呼吸门控耳迷走传入神经刺激的临床应用。","authors":"Zhiyuan Han, Cuicui Zhang, Keling Cheng, Yunfang Chen, Zhiqin Tang, Lewen Chen, Jun Ni, Zhiyong Wang","doi":"10.1016/j.neuroscience.2024.11.065","DOIUrl":null,"url":null,"abstract":"<p><p>Vagus nerve stimulation (VNS) has garnered significant attention as a promising bioelectronic therapy. In recent years, respiratory-gated auricular vagal afferent nerve stimulation (RAVANS), a novel non-invasive vagus nerve stimulation technique, has emerged. RAVANS integrates respiration with transcutaneous auricular vagus nerve stimulation (taVNS) and shares a similar mechanism of action to traditional VNS. Similar to conventional Vagus Nerve Stimulation (VNS), RAVANS may mitigate brain injury through three primary pathways: reducing neuronal apoptosis, modulating neurotransmitter release, and influencing inflammatory factor pathways. In this paper, we emphasize how RAVANS enhances the activation of nucleus of the solitary tract (NTS)and the locus coeruleus by regulating the monoaminergic and GABA systems through respiratory control. Additionally, it leverages the beneficial effects of respiration on the central nervous system. In this review, we delineate the potential mechanisms of action of RAVANS, provide a comprehensive overview of its clinical applications in chronic low back pain, migraine, depression, hypertension, and cognitive disorders. Furthermore, we offer future perspectives on optimizing the parameters of RAVANS and its application in post-stroke dysphagia. This will pave the way for new avenues in RAVANS research.</p>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":" ","pages":"117-123"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clinical application of respiratory-gated auricular vagal afferent nerve stimulation.\",\"authors\":\"Zhiyuan Han, Cuicui Zhang, Keling Cheng, Yunfang Chen, Zhiqin Tang, Lewen Chen, Jun Ni, Zhiyong Wang\",\"doi\":\"10.1016/j.neuroscience.2024.11.065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vagus nerve stimulation (VNS) has garnered significant attention as a promising bioelectronic therapy. In recent years, respiratory-gated auricular vagal afferent nerve stimulation (RAVANS), a novel non-invasive vagus nerve stimulation technique, has emerged. RAVANS integrates respiration with transcutaneous auricular vagus nerve stimulation (taVNS) and shares a similar mechanism of action to traditional VNS. Similar to conventional Vagus Nerve Stimulation (VNS), RAVANS may mitigate brain injury through three primary pathways: reducing neuronal apoptosis, modulating neurotransmitter release, and influencing inflammatory factor pathways. In this paper, we emphasize how RAVANS enhances the activation of nucleus of the solitary tract (NTS)and the locus coeruleus by regulating the monoaminergic and GABA systems through respiratory control. Additionally, it leverages the beneficial effects of respiration on the central nervous system. In this review, we delineate the potential mechanisms of action of RAVANS, provide a comprehensive overview of its clinical applications in chronic low back pain, migraine, depression, hypertension, and cognitive disorders. Furthermore, we offer future perspectives on optimizing the parameters of RAVANS and its application in post-stroke dysphagia. This will pave the way for new avenues in RAVANS research.</p>\",\"PeriodicalId\":19142,\"journal\":{\"name\":\"Neuroscience\",\"volume\":\" \",\"pages\":\"117-123\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neuroscience.2024.11.065\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroscience.2024.11.065","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Clinical application of respiratory-gated auricular vagal afferent nerve stimulation.
Vagus nerve stimulation (VNS) has garnered significant attention as a promising bioelectronic therapy. In recent years, respiratory-gated auricular vagal afferent nerve stimulation (RAVANS), a novel non-invasive vagus nerve stimulation technique, has emerged. RAVANS integrates respiration with transcutaneous auricular vagus nerve stimulation (taVNS) and shares a similar mechanism of action to traditional VNS. Similar to conventional Vagus Nerve Stimulation (VNS), RAVANS may mitigate brain injury through three primary pathways: reducing neuronal apoptosis, modulating neurotransmitter release, and influencing inflammatory factor pathways. In this paper, we emphasize how RAVANS enhances the activation of nucleus of the solitary tract (NTS)and the locus coeruleus by regulating the monoaminergic and GABA systems through respiratory control. Additionally, it leverages the beneficial effects of respiration on the central nervous system. In this review, we delineate the potential mechanisms of action of RAVANS, provide a comprehensive overview of its clinical applications in chronic low back pain, migraine, depression, hypertension, and cognitive disorders. Furthermore, we offer future perspectives on optimizing the parameters of RAVANS and its application in post-stroke dysphagia. This will pave the way for new avenues in RAVANS research.
期刊介绍:
Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.