MsDUF3700过表达增强紫花苜蓿芽对铝的耐受性。

IF 5.3 2区 生物学 Q1 PLANT SCIENCES Plant Cell Reports Pub Date : 2024-12-04 DOI:10.1007/s00299-024-03385-7
Jiamin Cao, Tingting Wang, Dian Yu, Junyi He, Wenwu Qian, Bingxia Tang, Xiaojing Bi, Hui Wang, Yunwei Zhang
{"title":"MsDUF3700过表达增强紫花苜蓿芽对铝的耐受性。","authors":"Jiamin Cao, Tingting Wang, Dian Yu, Junyi He, Wenwu Qian, Bingxia Tang, Xiaojing Bi, Hui Wang, Yunwei Zhang","doi":"10.1007/s00299-024-03385-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>This study identified a gene associated with aluminum stress through GWAS, which regulates aluminum tolerance in alfalfa by contributing to the antioxidant system. Aluminum (Al) ions precipitate in acidic soils with a pH < 5.5, where they are absorbed alongside other nutrients by plants, negatively impacting plant growth. Alfalfa, the most widely grown perennial legume forage in the world, is especially vulnerable to acidic soil conditions. Our research pinpointed MsDUF3700 as a potential gene linked to Al-response traits via genome-wide association analysis in Medicago sativa. MsDUF3700 encodes the domain of unknown function (DUF). We observed higher expression of MsDUF3700 in Al-tolerant alfalfa compared to Al-sensitive ecotypes. MsDUF3700-overexpressing transgenic alfalfa (MsDUF3700-OE) showed shorter root elongation and higher Al accumulation in roots than wild type (WT) under Al conditions. However, the shoots of MsDUF3700-OE lines showed enhanced growth rates under both normal and Al stress conditions. Under Al stress, MsDUF3700-OE lines showed increased H<sub>2</sub>O<sub>2</sub> and malondialdehyde (MDA) levels in the roots, alongside reduced catalase activity, In contrast, the shoots showed an inverse trend. In addition, we found that MsDUF3700-OE alfalfa plants had high Al accumulation in the roots and low Al accumulation in the shoots. Transcripts of MsALS3 and MsPALT1, homologs of Al translocation in alfalfa, were downregulated, while MsNrat1, a homolog of transporters absorb Al, was upregulated in the roots of MsDUF3700-OE in alfalfa. Our research indicates that MsDUF3700 plays a role in aluminum stress by participating in antioxidative defense and facilitating aluminum transport from roots to shoots.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"43 12","pages":"301"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MsDUF3700 overexpression enhances aluminum tolerance in alfalfa shoots.\",\"authors\":\"Jiamin Cao, Tingting Wang, Dian Yu, Junyi He, Wenwu Qian, Bingxia Tang, Xiaojing Bi, Hui Wang, Yunwei Zhang\",\"doi\":\"10.1007/s00299-024-03385-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Key message: </strong>This study identified a gene associated with aluminum stress through GWAS, which regulates aluminum tolerance in alfalfa by contributing to the antioxidant system. Aluminum (Al) ions precipitate in acidic soils with a pH < 5.5, where they are absorbed alongside other nutrients by plants, negatively impacting plant growth. Alfalfa, the most widely grown perennial legume forage in the world, is especially vulnerable to acidic soil conditions. Our research pinpointed MsDUF3700 as a potential gene linked to Al-response traits via genome-wide association analysis in Medicago sativa. MsDUF3700 encodes the domain of unknown function (DUF). We observed higher expression of MsDUF3700 in Al-tolerant alfalfa compared to Al-sensitive ecotypes. MsDUF3700-overexpressing transgenic alfalfa (MsDUF3700-OE) showed shorter root elongation and higher Al accumulation in roots than wild type (WT) under Al conditions. However, the shoots of MsDUF3700-OE lines showed enhanced growth rates under both normal and Al stress conditions. Under Al stress, MsDUF3700-OE lines showed increased H<sub>2</sub>O<sub>2</sub> and malondialdehyde (MDA) levels in the roots, alongside reduced catalase activity, In contrast, the shoots showed an inverse trend. In addition, we found that MsDUF3700-OE alfalfa plants had high Al accumulation in the roots and low Al accumulation in the shoots. Transcripts of MsALS3 and MsPALT1, homologs of Al translocation in alfalfa, were downregulated, while MsNrat1, a homolog of transporters absorb Al, was upregulated in the roots of MsDUF3700-OE in alfalfa. Our research indicates that MsDUF3700 plays a role in aluminum stress by participating in antioxidative defense and facilitating aluminum transport from roots to shoots.</p>\",\"PeriodicalId\":20204,\"journal\":{\"name\":\"Plant Cell Reports\",\"volume\":\"43 12\",\"pages\":\"301\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Cell Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00299-024-03385-7\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-024-03385-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

关键信息:本研究通过GWAS鉴定了一个与铝胁迫相关的基因,该基因通过促进抗氧化系统调节苜蓿的铝耐受性。在pH为2O2和丙二醛(MDA)水平的酸性土壤中,铝(Al)离子在根系中沉淀,过氧化氢酶活性降低,而茎部呈相反趋势。此外,我们发现MsDUF3700-OE苜蓿植株根系Al积累量高,茎部Al积累量低。苜蓿Al易位的同源基因MsALS3和MsPALT1的转录本下调,而转运蛋白吸收Al的同源基因MsNrat1在苜蓿MsDUF3700-OE的根中上调。我们的研究表明,MsDUF3700通过参与抗氧化防御和促进铝从根到芽的运输在铝胁迫中发挥作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MsDUF3700 overexpression enhances aluminum tolerance in alfalfa shoots.

Key message: This study identified a gene associated with aluminum stress through GWAS, which regulates aluminum tolerance in alfalfa by contributing to the antioxidant system. Aluminum (Al) ions precipitate in acidic soils with a pH < 5.5, where they are absorbed alongside other nutrients by plants, negatively impacting plant growth. Alfalfa, the most widely grown perennial legume forage in the world, is especially vulnerable to acidic soil conditions. Our research pinpointed MsDUF3700 as a potential gene linked to Al-response traits via genome-wide association analysis in Medicago sativa. MsDUF3700 encodes the domain of unknown function (DUF). We observed higher expression of MsDUF3700 in Al-tolerant alfalfa compared to Al-sensitive ecotypes. MsDUF3700-overexpressing transgenic alfalfa (MsDUF3700-OE) showed shorter root elongation and higher Al accumulation in roots than wild type (WT) under Al conditions. However, the shoots of MsDUF3700-OE lines showed enhanced growth rates under both normal and Al stress conditions. Under Al stress, MsDUF3700-OE lines showed increased H2O2 and malondialdehyde (MDA) levels in the roots, alongside reduced catalase activity, In contrast, the shoots showed an inverse trend. In addition, we found that MsDUF3700-OE alfalfa plants had high Al accumulation in the roots and low Al accumulation in the shoots. Transcripts of MsALS3 and MsPALT1, homologs of Al translocation in alfalfa, were downregulated, while MsNrat1, a homolog of transporters absorb Al, was upregulated in the roots of MsDUF3700-OE in alfalfa. Our research indicates that MsDUF3700 plays a role in aluminum stress by participating in antioxidative defense and facilitating aluminum transport from roots to shoots.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Cell Reports
Plant Cell Reports 生物-植物科学
CiteScore
10.80
自引率
1.60%
发文量
135
审稿时长
3.2 months
期刊介绍: Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as: - genomics and genetics - metabolism - cell biology - abiotic and biotic stress - phytopathology - gene transfer and expression - molecular pharming - systems biology - nanobiotechnology - genome editing - phenomics and synthetic biology The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.
期刊最新文献
Unraveling the role of autophagy and antioxidants in anther and pistil responses to heat stress in rapeseed (Brassica napus L.). Essential role of rice ERF101 in the perception of TAL effectors and immune activation mediated by the CC-BED NLR Xa1. Novel insight of the SVP gene involved in pedicel length based on genomics analysis in cherry. Pectin methylesterase inhibitor 58 negatively regulates ray petal elongation by inhibiting cell expansion in Gerbera hybrida. A high temperature responsive UDP-glucosyltransferase gene OsUGT72F1 enhances heat tolerance in rice and Arabidopsis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1