磷转运蛋白(PHT)基因的鉴定与表达分析。

IF 2.5 3区 生物学 Q3 CELL BIOLOGY Protoplasma Pub Date : 2024-12-03 DOI:10.1007/s00709-024-02014-0
Chiraz Friji, Hatem Boubakri, Luisa M Martinez, Laura Ruiz Torres, Antonio José Manzaneda, Mhemmed Gandour
{"title":"磷转运蛋白(PHT)基因的鉴定与表达分析。","authors":"Chiraz Friji, Hatem Boubakri, Luisa M Martinez, Laura Ruiz Torres, Antonio José Manzaneda, Mhemmed Gandour","doi":"10.1007/s00709-024-02014-0","DOIUrl":null,"url":null,"abstract":"<p><p>Phosphorus (P) is a macronutrient that plays a crucial role in critical plant functions. Phosphate transporters (PHTs) ensure the acquisition and translocation of Pi in the plant, thereby playing a key role in maintaining normal plant growth under Pi deficiency conditions. In Brachypodium distachyon, the grass model system, the function of individual PHT genes, remains largely unknown. Here, we identified the complete PHT gene family in B. distachyon, for the first time, and analyzed their expression profiles under Pi deficiency. Overall, 25 PHT genes in B. distachyon (BdPHTs) were identified, which were divided into four clades (PHT1-4). BdPHT genes were found to be unevenly distributed across the five chromosomes. Both segmental and tandem duplication events contributed to PHT gene expansion in B. distachyon which underwent a strong purifying selection. Moreover, exon-intron organization and motif composition were conserved within each PHT group consolidating the classification of the phylogenetic tree. Motif composition differs among the four PHT groups, indicating their functional divergence. Gene expression analysis using real-time quantitative PCR revealed that two BdPHT1 genes (BdPHT1.9 and BdPHT1.10) were upregulated in leaves, and seven (BdPHT1.9, BdPHT1.8, BdPHT1.7, BdPHT1.11, BdPHT1.12, BdPHT1.5, and BdPHT1.13) in roots under P deficiency suggesting their involvement in P uptake and translocation. Therefore, these results lay the foundation for future functional analyses in B. distachyon to improve P deficiency tolerance in B. distachyon and other cereals.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification and expression analysis of phosphate transporter (PHT) genes in Brachypodium distachyon in response to phosphorus deficiency.\",\"authors\":\"Chiraz Friji, Hatem Boubakri, Luisa M Martinez, Laura Ruiz Torres, Antonio José Manzaneda, Mhemmed Gandour\",\"doi\":\"10.1007/s00709-024-02014-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phosphorus (P) is a macronutrient that plays a crucial role in critical plant functions. Phosphate transporters (PHTs) ensure the acquisition and translocation of Pi in the plant, thereby playing a key role in maintaining normal plant growth under Pi deficiency conditions. In Brachypodium distachyon, the grass model system, the function of individual PHT genes, remains largely unknown. Here, we identified the complete PHT gene family in B. distachyon, for the first time, and analyzed their expression profiles under Pi deficiency. Overall, 25 PHT genes in B. distachyon (BdPHTs) were identified, which were divided into four clades (PHT1-4). BdPHT genes were found to be unevenly distributed across the five chromosomes. Both segmental and tandem duplication events contributed to PHT gene expansion in B. distachyon which underwent a strong purifying selection. Moreover, exon-intron organization and motif composition were conserved within each PHT group consolidating the classification of the phylogenetic tree. Motif composition differs among the four PHT groups, indicating their functional divergence. Gene expression analysis using real-time quantitative PCR revealed that two BdPHT1 genes (BdPHT1.9 and BdPHT1.10) were upregulated in leaves, and seven (BdPHT1.9, BdPHT1.8, BdPHT1.7, BdPHT1.11, BdPHT1.12, BdPHT1.5, and BdPHT1.13) in roots under P deficiency suggesting their involvement in P uptake and translocation. Therefore, these results lay the foundation for future functional analyses in B. distachyon to improve P deficiency tolerance in B. distachyon and other cereals.</p>\",\"PeriodicalId\":20731,\"journal\":{\"name\":\"Protoplasma\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protoplasma\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00709-024-02014-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protoplasma","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00709-024-02014-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

磷(P)是一种常量营养素,在植物的关键功能中起着至关重要的作用。磷酸盐转运体(pht)保证了植物中磷的获取和转运,从而在缺磷条件下维持植物的正常生长中发挥关键作用。在短茅中,草的模式系统,单个PHT基因的功能,在很大程度上仍然是未知的。本研究首次鉴定出了双胞杆菌PHT基因的完整家族,并分析了其在缺磷条件下的表达谱。共鉴定出25个PHT基因,分为4个支系(PHT1-4)。BdPHT基因在5条染色体上分布不均匀。片段复制和串联复制都促进了PHT基因在双歧杆菌中扩增,并经历了强烈的纯化选择。此外,每个PHT组的外显子-内含子组织和基序组成都是保守的,巩固了系统发育树的分类。四个PHT组的基序组成不同,表明它们的功能差异。实时定量PCR分析结果显示,缺磷条件下,叶片中2个BdPHT1基因(BdPHT1.9和BdPHT1.10)表达上调,根部中7个基因(BdPHT1.9、BdPHT1.8、BdPHT1.7、BdPHT1.11、BdPHT1.12、BdPHT1.5和BdPHT1.13)表达上调,提示它们参与了磷的吸收和转运。因此,这些结果为进一步分析双歧杆菌的功能奠定了基础,以提高双歧杆菌和其他谷物对缺磷的耐受性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification and expression analysis of phosphate transporter (PHT) genes in Brachypodium distachyon in response to phosphorus deficiency.

Phosphorus (P) is a macronutrient that plays a crucial role in critical plant functions. Phosphate transporters (PHTs) ensure the acquisition and translocation of Pi in the plant, thereby playing a key role in maintaining normal plant growth under Pi deficiency conditions. In Brachypodium distachyon, the grass model system, the function of individual PHT genes, remains largely unknown. Here, we identified the complete PHT gene family in B. distachyon, for the first time, and analyzed their expression profiles under Pi deficiency. Overall, 25 PHT genes in B. distachyon (BdPHTs) were identified, which were divided into four clades (PHT1-4). BdPHT genes were found to be unevenly distributed across the five chromosomes. Both segmental and tandem duplication events contributed to PHT gene expansion in B. distachyon which underwent a strong purifying selection. Moreover, exon-intron organization and motif composition were conserved within each PHT group consolidating the classification of the phylogenetic tree. Motif composition differs among the four PHT groups, indicating their functional divergence. Gene expression analysis using real-time quantitative PCR revealed that two BdPHT1 genes (BdPHT1.9 and BdPHT1.10) were upregulated in leaves, and seven (BdPHT1.9, BdPHT1.8, BdPHT1.7, BdPHT1.11, BdPHT1.12, BdPHT1.5, and BdPHT1.13) in roots under P deficiency suggesting their involvement in P uptake and translocation. Therefore, these results lay the foundation for future functional analyses in B. distachyon to improve P deficiency tolerance in B. distachyon and other cereals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Protoplasma
Protoplasma 生物-细胞生物学
CiteScore
6.60
自引率
6.90%
发文量
99
审稿时长
4-8 weeks
期刊介绍: Protoplasma publishes original papers, short communications and review articles which are of interest to cell biology in all its scientific and applied aspects. We seek contributions dealing with plants and animals but also prokaryotes, protists and fungi, from the following fields: cell biology of both single and multicellular organisms molecular cytology the cell cycle membrane biology including biogenesis, dynamics, energetics and electrophysiology inter- and intracellular transport the cytoskeleton organelles experimental and quantitative ultrastructure cyto- and histochemistry Further, conceptual contributions such as new models or discoveries at the cutting edge of cell biology research will be published under the headings "New Ideas in Cell Biology".
期刊最新文献
Cerium oxide nanoparticles ameliorate Arabidopsis thaliana root damage under UV-B stress by modulating the cell cycle and auxin pathways. TGG1 and TGG2 mutations impair allyl isothiocyanate-mediated stomatal closure in Arabidopsis thaliana. Influence of Ty3/gypsy and Ty1/copia LTR-retrotransposons on the large genomes of Alstroemeriaceae: genome landscape of Bomarea edulis (Tussac) Herb. Morphological, anatomical, and bioactive properties of Hypericum scabrum L.: effects on diabetes mellitus, Alzheimer's disease, and HDFa fibroblasts and U87-MG cancer cells. Typical tetra-mediated signaling and plant architectural changes regulate salt-stress tolerance in indica rice genotypes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1