Wan-Yu Chi, Hao-Wei Huang, Gang-Hui Lee, Criselda Jean G Cruz, Michael W Hughes, Ming-Jer Tang, Shyh-Jou Shieh, Chao-Chun Yang
{"title":"人体跨皮肤层的机械刚度:一项初步研究。","authors":"Wan-Yu Chi, Hao-Wei Huang, Gang-Hui Lee, Criselda Jean G Cruz, Michael W Hughes, Ming-Jer Tang, Shyh-Jou Shieh, Chao-Chun Yang","doi":"10.1080/21688370.2024.2437220","DOIUrl":null,"url":null,"abstract":"<p><p>Mechanobiological forces play a pivotal role in the processes of skin homeostasis, wound healing and regeneration. Changes in tissue stiffness are linked to various skin diseases. Using atomic force microscopy, we analyzed the elastic modulus, representing mechanical stiffness, of different skin layers in a group of six participants, including 2 males and 4 females, aged between 1 and 70 years. The skin layers, ranked from highest to lowest elastic modulus, are the epidermis, papillary dermis, upper reticular dermis, lower reticular dermis, sebaceous gland, and subcutaneous tissue. This study contributes to more understanding of the physical properties of the skin, offering a reference for further research on skin physiology or pathology.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2437220"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical stiffness across skin layers in human: a pilot study.\",\"authors\":\"Wan-Yu Chi, Hao-Wei Huang, Gang-Hui Lee, Criselda Jean G Cruz, Michael W Hughes, Ming-Jer Tang, Shyh-Jou Shieh, Chao-Chun Yang\",\"doi\":\"10.1080/21688370.2024.2437220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mechanobiological forces play a pivotal role in the processes of skin homeostasis, wound healing and regeneration. Changes in tissue stiffness are linked to various skin diseases. Using atomic force microscopy, we analyzed the elastic modulus, representing mechanical stiffness, of different skin layers in a group of six participants, including 2 males and 4 females, aged between 1 and 70 years. The skin layers, ranked from highest to lowest elastic modulus, are the epidermis, papillary dermis, upper reticular dermis, lower reticular dermis, sebaceous gland, and subcutaneous tissue. This study contributes to more understanding of the physical properties of the skin, offering a reference for further research on skin physiology or pathology.</p>\",\"PeriodicalId\":23469,\"journal\":{\"name\":\"Tissue Barriers\",\"volume\":\" \",\"pages\":\"2437220\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue Barriers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21688370.2024.2437220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Barriers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21688370.2024.2437220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Mechanical stiffness across skin layers in human: a pilot study.
Mechanobiological forces play a pivotal role in the processes of skin homeostasis, wound healing and regeneration. Changes in tissue stiffness are linked to various skin diseases. Using atomic force microscopy, we analyzed the elastic modulus, representing mechanical stiffness, of different skin layers in a group of six participants, including 2 males and 4 females, aged between 1 and 70 years. The skin layers, ranked from highest to lowest elastic modulus, are the epidermis, papillary dermis, upper reticular dermis, lower reticular dermis, sebaceous gland, and subcutaneous tissue. This study contributes to more understanding of the physical properties of the skin, offering a reference for further research on skin physiology or pathology.
期刊介绍:
Tissue Barriers is the first international interdisciplinary journal that focuses on the architecture, biological roles and regulation of tissue barriers and intercellular junctions. We publish high quality peer-reviewed articles that cover a wide range of topics including structure and functions of the diverse and complex tissue barriers that occur across tissue and cell types, including the molecular composition and dynamics of polarized cell junctions and cell-cell interactions during normal homeostasis, injury and disease state. Tissue barrier formation in regenerative medicine and restoration of tissue and organ function is also of interest. Tissue Barriers publishes several categories of articles including: Original Research Papers, Short Communications, Technical Papers, Reviews, Perspectives and Commentaries, Hypothesis and Meeting Reports. Reviews and Perspectives/Commentaries will typically be invited. We also anticipate to publish special issues that are devoted to rapidly developing or controversial areas of research. Suggestions for topics are welcome. Tissue Barriers objectives: Promote interdisciplinary awareness and collaboration between researchers working with epithelial, epidermal and endothelial barriers and to build a broad and cohesive worldwide community of scientists interesting in this exciting field. Comprehend the enormous complexity of tissue barriers and map cross-talks and interactions between their different cellular and non-cellular components. Highlight the roles of tissue barrier dysfunctions in human diseases. Promote understanding and strategies for restoration of tissue barrier formation and function in regenerative medicine. Accelerate a search for pharmacological enhancers of tissue barriers as potential therapeutic agents. Understand and optimize drug delivery across epithelial and endothelial barriers.