{"title":"[水体环境污染及细胞外抗生素耐药基因提取方法]。","authors":"Ji-Yuan Gu, Wei-Ying Li, Yu Zhou, Guo-Sheng Zhang","doi":"10.13227/j.hjkx.202401087","DOIUrl":null,"url":null,"abstract":"<p><p>Antibiotics are widely used to treat diseases such as bacterial infections. However, the abuse of antibiotics has led to the spread of antibiotic resistant bacteria and intracellular and extracellular antibiotic resistance genes, making China one of the countries with the highest incidence of antibiotic resistance and thus threatening public health. Extracellular antibiotic resistance genes, as one of the novel environmental pollutants, could exist in water for a long time and could be transmitted between different bacteria through horizontal gene transfer, resulting in the spread of antibiotic resistance. At present, due to the limitation of enrichment and recovery methods, the in-depth studies of extracellular antibiotic resistance genes in water have been rarely reported. Thus, it is impossible to carry out effective supervision and risk assessments. Based on literature analysis and investigation, the pollution sources, current situations, and characteristics of extracellular antibiotic resistance genes in water are expounded. Meanwhile, the advantages and disadvantages of their enrichment and recovery methods are compared and analyzed and the enrichment and recovery methods are verified and discussed through practical cases. These provide theoretical reference for studies such as examining extracellular antibiotic resistance genes in water on their transmission and provide a technical basis for antibiotic resistance control and health risk assessments of extracellular antibiotic resistance genes.</p>","PeriodicalId":35937,"journal":{"name":"环境科学","volume":"45 12","pages":"7041-7048"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Environmental Pollution and Extraction Methods of Extracellular Antibiotic Resistance Genes in Water].\",\"authors\":\"Ji-Yuan Gu, Wei-Ying Li, Yu Zhou, Guo-Sheng Zhang\",\"doi\":\"10.13227/j.hjkx.202401087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antibiotics are widely used to treat diseases such as bacterial infections. However, the abuse of antibiotics has led to the spread of antibiotic resistant bacteria and intracellular and extracellular antibiotic resistance genes, making China one of the countries with the highest incidence of antibiotic resistance and thus threatening public health. Extracellular antibiotic resistance genes, as one of the novel environmental pollutants, could exist in water for a long time and could be transmitted between different bacteria through horizontal gene transfer, resulting in the spread of antibiotic resistance. At present, due to the limitation of enrichment and recovery methods, the in-depth studies of extracellular antibiotic resistance genes in water have been rarely reported. Thus, it is impossible to carry out effective supervision and risk assessments. Based on literature analysis and investigation, the pollution sources, current situations, and characteristics of extracellular antibiotic resistance genes in water are expounded. Meanwhile, the advantages and disadvantages of their enrichment and recovery methods are compared and analyzed and the enrichment and recovery methods are verified and discussed through practical cases. These provide theoretical reference for studies such as examining extracellular antibiotic resistance genes in water on their transmission and provide a technical basis for antibiotic resistance control and health risk assessments of extracellular antibiotic resistance genes.</p>\",\"PeriodicalId\":35937,\"journal\":{\"name\":\"环境科学\",\"volume\":\"45 12\",\"pages\":\"7041-7048\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.13227/j.hjkx.202401087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.13227/j.hjkx.202401087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
[Environmental Pollution and Extraction Methods of Extracellular Antibiotic Resistance Genes in Water].
Antibiotics are widely used to treat diseases such as bacterial infections. However, the abuse of antibiotics has led to the spread of antibiotic resistant bacteria and intracellular and extracellular antibiotic resistance genes, making China one of the countries with the highest incidence of antibiotic resistance and thus threatening public health. Extracellular antibiotic resistance genes, as one of the novel environmental pollutants, could exist in water for a long time and could be transmitted between different bacteria through horizontal gene transfer, resulting in the spread of antibiotic resistance. At present, due to the limitation of enrichment and recovery methods, the in-depth studies of extracellular antibiotic resistance genes in water have been rarely reported. Thus, it is impossible to carry out effective supervision and risk assessments. Based on literature analysis and investigation, the pollution sources, current situations, and characteristics of extracellular antibiotic resistance genes in water are expounded. Meanwhile, the advantages and disadvantages of their enrichment and recovery methods are compared and analyzed and the enrichment and recovery methods are verified and discussed through practical cases. These provide theoretical reference for studies such as examining extracellular antibiotic resistance genes in water on their transmission and provide a technical basis for antibiotic resistance control and health risk assessments of extracellular antibiotic resistance genes.