[水体环境污染及细胞外抗生素耐药基因提取方法]。

Q2 Environmental Science 环境科学 Pub Date : 2024-12-08 DOI:10.13227/j.hjkx.202401087
Ji-Yuan Gu, Wei-Ying Li, Yu Zhou, Guo-Sheng Zhang
{"title":"[水体环境污染及细胞外抗生素耐药基因提取方法]。","authors":"Ji-Yuan Gu, Wei-Ying Li, Yu Zhou, Guo-Sheng Zhang","doi":"10.13227/j.hjkx.202401087","DOIUrl":null,"url":null,"abstract":"<p><p>Antibiotics are widely used to treat diseases such as bacterial infections. However, the abuse of antibiotics has led to the spread of antibiotic resistant bacteria and intracellular and extracellular antibiotic resistance genes, making China one of the countries with the highest incidence of antibiotic resistance and thus threatening public health. Extracellular antibiotic resistance genes, as one of the novel environmental pollutants, could exist in water for a long time and could be transmitted between different bacteria through horizontal gene transfer, resulting in the spread of antibiotic resistance. At present, due to the limitation of enrichment and recovery methods, the in-depth studies of extracellular antibiotic resistance genes in water have been rarely reported. Thus, it is impossible to carry out effective supervision and risk assessments. Based on literature analysis and investigation, the pollution sources, current situations, and characteristics of extracellular antibiotic resistance genes in water are expounded. Meanwhile, the advantages and disadvantages of their enrichment and recovery methods are compared and analyzed and the enrichment and recovery methods are verified and discussed through practical cases. These provide theoretical reference for studies such as examining extracellular antibiotic resistance genes in water on their transmission and provide a technical basis for antibiotic resistance control and health risk assessments of extracellular antibiotic resistance genes.</p>","PeriodicalId":35937,"journal":{"name":"环境科学","volume":"45 12","pages":"7041-7048"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Environmental Pollution and Extraction Methods of Extracellular Antibiotic Resistance Genes in Water].\",\"authors\":\"Ji-Yuan Gu, Wei-Ying Li, Yu Zhou, Guo-Sheng Zhang\",\"doi\":\"10.13227/j.hjkx.202401087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antibiotics are widely used to treat diseases such as bacterial infections. However, the abuse of antibiotics has led to the spread of antibiotic resistant bacteria and intracellular and extracellular antibiotic resistance genes, making China one of the countries with the highest incidence of antibiotic resistance and thus threatening public health. Extracellular antibiotic resistance genes, as one of the novel environmental pollutants, could exist in water for a long time and could be transmitted between different bacteria through horizontal gene transfer, resulting in the spread of antibiotic resistance. At present, due to the limitation of enrichment and recovery methods, the in-depth studies of extracellular antibiotic resistance genes in water have been rarely reported. Thus, it is impossible to carry out effective supervision and risk assessments. Based on literature analysis and investigation, the pollution sources, current situations, and characteristics of extracellular antibiotic resistance genes in water are expounded. Meanwhile, the advantages and disadvantages of their enrichment and recovery methods are compared and analyzed and the enrichment and recovery methods are verified and discussed through practical cases. These provide theoretical reference for studies such as examining extracellular antibiotic resistance genes in water on their transmission and provide a technical basis for antibiotic resistance control and health risk assessments of extracellular antibiotic resistance genes.</p>\",\"PeriodicalId\":35937,\"journal\":{\"name\":\"环境科学\",\"volume\":\"45 12\",\"pages\":\"7041-7048\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.13227/j.hjkx.202401087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.13227/j.hjkx.202401087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

抗生素被广泛用于治疗细菌感染等疾病。然而,抗生素的滥用导致抗生素耐药菌和细胞内、细胞外抗生素耐药基因的传播,使中国成为抗生素耐药发生率最高的国家之一,从而威胁到公众健康。细胞外抗生素耐药基因作为一种新型环境污染物,可以在水中长期存在,并通过水平基因转移在不同细菌之间传播,导致抗生素耐药性的扩散。目前,由于富集和回收方法的限制,对水中细胞外抗生素耐药基因的深入研究很少有报道。因此,不可能进行有效的监管和风险评估。在文献分析和调查的基础上,阐述了水体中细胞外抗生素耐药基因的污染源、现状及特点。同时,比较分析了各种富集回收方法的优缺点,并通过实际案例对富集回收方法进行了验证和讨论。这为检测水中细胞外抗生素耐药基因的传播等研究提供了理论参考,并为细胞外抗生素耐药基因的耐药性控制和健康风险评估提供了技术依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[Environmental Pollution and Extraction Methods of Extracellular Antibiotic Resistance Genes in Water].

Antibiotics are widely used to treat diseases such as bacterial infections. However, the abuse of antibiotics has led to the spread of antibiotic resistant bacteria and intracellular and extracellular antibiotic resistance genes, making China one of the countries with the highest incidence of antibiotic resistance and thus threatening public health. Extracellular antibiotic resistance genes, as one of the novel environmental pollutants, could exist in water for a long time and could be transmitted between different bacteria through horizontal gene transfer, resulting in the spread of antibiotic resistance. At present, due to the limitation of enrichment and recovery methods, the in-depth studies of extracellular antibiotic resistance genes in water have been rarely reported. Thus, it is impossible to carry out effective supervision and risk assessments. Based on literature analysis and investigation, the pollution sources, current situations, and characteristics of extracellular antibiotic resistance genes in water are expounded. Meanwhile, the advantages and disadvantages of their enrichment and recovery methods are compared and analyzed and the enrichment and recovery methods are verified and discussed through practical cases. These provide theoretical reference for studies such as examining extracellular antibiotic resistance genes in water on their transmission and provide a technical basis for antibiotic resistance control and health risk assessments of extracellular antibiotic resistance genes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
环境科学
环境科学 Environmental Science-Environmental Science (all)
CiteScore
4.40
自引率
0.00%
发文量
15329
期刊介绍:
期刊最新文献
[Key Problems and Strategies for Greenhouse Gas Reduction in China's Wastewater Treatment Industry]. [Legacy Effects of Long-term Straw Returning on Straw Degradation and Microbial Communities of the Aftercrop]. [Mechanisms of Rhizosphere Microorganisms in Regulating Plant Root System Architecture in Acidic Soils]. [Meta-analysis of the Occurrence Characteristics and Influencing Factors of Microplastics in Agricultural Soil in China]. [Meta-analysis on the Effects of Organic Fertilizer Application on Global Greenhouse Gas Emissions from Agricultural Soils].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1