GPT-3.5与GPT-4在韩国药师资格考试中的表现:比较研究

IF 3.2 Q1 EDUCATION, SCIENTIFIC DISCIPLINES JMIR Medical Education Pub Date : 2024-12-04 DOI:10.2196/57451
Hye Kyung Jin, EunYoung Kim
{"title":"GPT-3.5与GPT-4在韩国药师资格考试中的表现:比较研究","authors":"Hye Kyung Jin, EunYoung Kim","doi":"10.2196/57451","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>ChatGPT, a recently developed artificial intelligence chatbot and a notable large language model, has demonstrated improved performance on medical field examinations. However, there is currently little research on its efficacy in languages other than English or in pharmacy-related examinations.</p><p><strong>Objective: </strong>This study aimed to evaluate the performance of GPT models on the Korean Pharmacist Licensing Examination (KPLE).</p><p><strong>Methods: </strong>We evaluated the percentage of correct answers provided by 2 different versions of ChatGPT (GPT-3.5 and GPT-4) for all multiple-choice single-answer KPLE questions, excluding image-based questions. In total, 320, 317, and 323 questions from the 2021, 2022, and 2023 KPLEs, respectively, were included in the final analysis, which consisted of 4 units: Biopharmacy, Industrial Pharmacy, Clinical and Practical Pharmacy, and Medical Health Legislation.</p><p><strong>Results: </strong>The 3-year average percentage of correct answers was 86.5% (830/960) for GPT-4 and 60.7% (583/960) for GPT-3.5. GPT model accuracy was highest in Biopharmacy (GPT-3.5 77/96, 80.2% in 2022; GPT-4 87/90, 96.7% in 2021) and lowest in Medical Health Legislation (GPT-3.5 8/20, 40% in 2022; GPT-4 12/20, 60% in 2022). Additionally, when comparing the performance of artificial intelligence with that of human participants, pharmacy students outperformed GPT-3.5 but not GPT-4.</p><p><strong>Conclusions: </strong>In the last 3 years, GPT models have performed very close to or exceeded the passing threshold for the KPLE. This study demonstrates the potential of large language models in the pharmacy domain; however, extensive research is needed to evaluate their reliability and ensure their secure application in pharmacy contexts due to several inherent challenges. Addressing these limitations could make GPT models more effective auxiliary tools for pharmacy education.</p>","PeriodicalId":36236,"journal":{"name":"JMIR Medical Education","volume":"10 ","pages":"e57451"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633516/pdf/","citationCount":"0","resultStr":"{\"title\":\"Performance of GPT-3.5 and GPT-4 on the Korean Pharmacist Licensing Examination: Comparison Study.\",\"authors\":\"Hye Kyung Jin, EunYoung Kim\",\"doi\":\"10.2196/57451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>ChatGPT, a recently developed artificial intelligence chatbot and a notable large language model, has demonstrated improved performance on medical field examinations. However, there is currently little research on its efficacy in languages other than English or in pharmacy-related examinations.</p><p><strong>Objective: </strong>This study aimed to evaluate the performance of GPT models on the Korean Pharmacist Licensing Examination (KPLE).</p><p><strong>Methods: </strong>We evaluated the percentage of correct answers provided by 2 different versions of ChatGPT (GPT-3.5 and GPT-4) for all multiple-choice single-answer KPLE questions, excluding image-based questions. In total, 320, 317, and 323 questions from the 2021, 2022, and 2023 KPLEs, respectively, were included in the final analysis, which consisted of 4 units: Biopharmacy, Industrial Pharmacy, Clinical and Practical Pharmacy, and Medical Health Legislation.</p><p><strong>Results: </strong>The 3-year average percentage of correct answers was 86.5% (830/960) for GPT-4 and 60.7% (583/960) for GPT-3.5. GPT model accuracy was highest in Biopharmacy (GPT-3.5 77/96, 80.2% in 2022; GPT-4 87/90, 96.7% in 2021) and lowest in Medical Health Legislation (GPT-3.5 8/20, 40% in 2022; GPT-4 12/20, 60% in 2022). Additionally, when comparing the performance of artificial intelligence with that of human participants, pharmacy students outperformed GPT-3.5 but not GPT-4.</p><p><strong>Conclusions: </strong>In the last 3 years, GPT models have performed very close to or exceeded the passing threshold for the KPLE. This study demonstrates the potential of large language models in the pharmacy domain; however, extensive research is needed to evaluate their reliability and ensure their secure application in pharmacy contexts due to several inherent challenges. Addressing these limitations could make GPT models more effective auxiliary tools for pharmacy education.</p>\",\"PeriodicalId\":36236,\"journal\":{\"name\":\"JMIR Medical Education\",\"volume\":\"10 \",\"pages\":\"e57451\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633516/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMIR Medical Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2196/57451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/57451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0

摘要

背景:ChatGPT是最近发展起来的人工智能聊天机器人,也是一个著名的大型语言模型,在医学现场检查中表现出了提高的性能。然而,目前对其在英语以外的语言或药学相关考试中的有效性的研究很少。目的:评价GPT模型在韩国药师资格考试(KPLE)中的表现。方法:我们评估了两个不同版本的ChatGPT (GPT-3.5和GPT-4)对所有选择单答案的KPLE问题提供的正确答案百分比,不包括基于图像的问题。最终分析的问题分别来自2021年、2022年和2023年的kple,题目分别为320、317和323个,包括4个单元:生物药剂学、工业药剂学、临床与实用药剂学和医疗卫生立法。结果:GPT-4和GPT-3.5的3年平均正确率分别为86.5%(830/960)和60.7%(583/960)。GPT模型准确率最高的是生物药剂学(GPT-3.5 77/96, 2022年为80.2%;GPT-4为87/90,2021年为96.7%),医疗卫生立法最低(GPT-3.5为8/20,2022年为40%;GPT-4 12/20, 2022年60%)。此外,当将人工智能的表现与人类参与者的表现进行比较时,药学专业学生的表现优于GPT-3.5,而不是GPT-4。结论:在过去3年中,GPT模型的表现非常接近或超过了KPLE的通过阈值。本研究展示了大型语言模型在药学领域的潜力;然而,由于一些固有的挑战,需要广泛的研究来评估它们的可靠性,并确保它们在药学环境中的安全应用。解决这些局限性可以使GPT模型成为药学教育更有效的辅助工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance of GPT-3.5 and GPT-4 on the Korean Pharmacist Licensing Examination: Comparison Study.

Background: ChatGPT, a recently developed artificial intelligence chatbot and a notable large language model, has demonstrated improved performance on medical field examinations. However, there is currently little research on its efficacy in languages other than English or in pharmacy-related examinations.

Objective: This study aimed to evaluate the performance of GPT models on the Korean Pharmacist Licensing Examination (KPLE).

Methods: We evaluated the percentage of correct answers provided by 2 different versions of ChatGPT (GPT-3.5 and GPT-4) for all multiple-choice single-answer KPLE questions, excluding image-based questions. In total, 320, 317, and 323 questions from the 2021, 2022, and 2023 KPLEs, respectively, were included in the final analysis, which consisted of 4 units: Biopharmacy, Industrial Pharmacy, Clinical and Practical Pharmacy, and Medical Health Legislation.

Results: The 3-year average percentage of correct answers was 86.5% (830/960) for GPT-4 and 60.7% (583/960) for GPT-3.5. GPT model accuracy was highest in Biopharmacy (GPT-3.5 77/96, 80.2% in 2022; GPT-4 87/90, 96.7% in 2021) and lowest in Medical Health Legislation (GPT-3.5 8/20, 40% in 2022; GPT-4 12/20, 60% in 2022). Additionally, when comparing the performance of artificial intelligence with that of human participants, pharmacy students outperformed GPT-3.5 but not GPT-4.

Conclusions: In the last 3 years, GPT models have performed very close to or exceeded the passing threshold for the KPLE. This study demonstrates the potential of large language models in the pharmacy domain; however, extensive research is needed to evaluate their reliability and ensure their secure application in pharmacy contexts due to several inherent challenges. Addressing these limitations could make GPT models more effective auxiliary tools for pharmacy education.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JMIR Medical Education
JMIR Medical Education Social Sciences-Education
CiteScore
6.90
自引率
5.60%
发文量
54
审稿时长
8 weeks
期刊最新文献
AI in the Health Sector: Systematic Review of Key Skills for Future Health Professionals. Understanding Community Health Care Through Problem-Based Learning With Real-Patient Videos: Single-Arm Pre-Post Mixed Methods Study. Assessing Familiarity, Usage Patterns, and Attitudes of Medical Students Toward ChatGPT and Other Chat-Based AI Apps in Medical Education: Cross-Sectional Questionnaire Study. Collaborative Development of Feedback Concept Maps for Virtual Patient-Based Clinical Reasoning Education: Mixed Methods Study. Barriers to and Facilitators of Implementing Team-Based Extracorporeal Membrane Oxygenation Simulation Study: Exploratory Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1