Qi Li, Die Wang, Weilong Xiao, Yingying Tang, Qi Sun, Binghai Sun, Zhishan Hu
{"title":"在翻转课堂中,师生之间的结构化互动促进了学习和脑间同步。","authors":"Qi Li, Die Wang, Weilong Xiao, Yingying Tang, Qi Sun, Binghai Sun, Zhishan Hu","doi":"10.1038/s41539-024-00286-y","DOIUrl":null,"url":null,"abstract":"<p><p>Studies have found that flipped classroom teaching (FT) improves learning compared to lecture-based teaching (LT). However, whether the structured teacher-student interaction-the key feature of FT-plays an essential role in enhancing learning remains unclear, as do its neural underpinnings. Here, we compared three teaching conditions: FT with a video lecture and structured interaction, LT with a face-to-face lecture and spontaneous interaction, and control teaching (CT) with a video lecture and spontaneous interaction. The fNIRS-based hyperscanning technique was used to assess the interbrain synchrony (IBS) from teacher-student dyads. Results showed that the learning was significantly improved in FT than in LT and CT, and FT significantly increased teacher-student IBS in left DLPFC. Moreover, the IBS and learning improvements were positively correlated. Therefore, these findings indicate that the structured teacher-student interaction is crucial for enhancing learning in FT, and IBS serves as its neural foundation.</p>","PeriodicalId":48503,"journal":{"name":"npj Science of Learning","volume":"9 1","pages":"73"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612419/pdf/","citationCount":"0","resultStr":"{\"title\":\"Structured interaction between teacher and student in the flipped classroom enhances learning and interbrain synchrony.\",\"authors\":\"Qi Li, Die Wang, Weilong Xiao, Yingying Tang, Qi Sun, Binghai Sun, Zhishan Hu\",\"doi\":\"10.1038/s41539-024-00286-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Studies have found that flipped classroom teaching (FT) improves learning compared to lecture-based teaching (LT). However, whether the structured teacher-student interaction-the key feature of FT-plays an essential role in enhancing learning remains unclear, as do its neural underpinnings. Here, we compared three teaching conditions: FT with a video lecture and structured interaction, LT with a face-to-face lecture and spontaneous interaction, and control teaching (CT) with a video lecture and spontaneous interaction. The fNIRS-based hyperscanning technique was used to assess the interbrain synchrony (IBS) from teacher-student dyads. Results showed that the learning was significantly improved in FT than in LT and CT, and FT significantly increased teacher-student IBS in left DLPFC. Moreover, the IBS and learning improvements were positively correlated. Therefore, these findings indicate that the structured teacher-student interaction is crucial for enhancing learning in FT, and IBS serves as its neural foundation.</p>\",\"PeriodicalId\":48503,\"journal\":{\"name\":\"npj Science of Learning\",\"volume\":\"9 1\",\"pages\":\"73\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612419/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Science of Learning\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1038/s41539-024-00286-y\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Science of Learning","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1038/s41539-024-00286-y","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Structured interaction between teacher and student in the flipped classroom enhances learning and interbrain synchrony.
Studies have found that flipped classroom teaching (FT) improves learning compared to lecture-based teaching (LT). However, whether the structured teacher-student interaction-the key feature of FT-plays an essential role in enhancing learning remains unclear, as do its neural underpinnings. Here, we compared three teaching conditions: FT with a video lecture and structured interaction, LT with a face-to-face lecture and spontaneous interaction, and control teaching (CT) with a video lecture and spontaneous interaction. The fNIRS-based hyperscanning technique was used to assess the interbrain synchrony (IBS) from teacher-student dyads. Results showed that the learning was significantly improved in FT than in LT and CT, and FT significantly increased teacher-student IBS in left DLPFC. Moreover, the IBS and learning improvements were positively correlated. Therefore, these findings indicate that the structured teacher-student interaction is crucial for enhancing learning in FT, and IBS serves as its neural foundation.