Haobo Zhang , Haonan Sun , Jiatao Li , Zhangwei Lv , Yun Tian , Xu Lei
{"title":"基因表达与失眠症的大脑功能有关,而不是与大脑结构有关。","authors":"Haobo Zhang , Haonan Sun , Jiatao Li , Zhangwei Lv , Yun Tian , Xu Lei","doi":"10.1016/j.pnpbp.2024.111209","DOIUrl":null,"url":null,"abstract":"<div><div>Previous research has found brain structural and functional abnormalities in patients with insomnia disorder (ID). However, the relationship between brain abnormalities in ID and brain gene expression is unclear. This study explored the relationship between gene expression and brain structural or functional abnormalities in ID, and we validated the reliability of the results with two independent datasets (discover dataset: healthy control (HC) = 129, ID = 264; validation dataset: HC = 160, ID = 115). Brain imaging results show that ID has abnormal resting-state spontaneous activity, regional homogeneity, and widespread gray matter volume reduction compared to HC. The association analysis results with gene expression further revealed that brain function abnormalities in ID were significantly associated with gene expression, but structural abnormalities were not. This study establishes a link between transcriptional changes and brain functional abnormalities in ID, revealing a genetic basis that may involve several biological pathways. Specifically, these pathways include hormonal regulation of the hypothalamic-pituitary-adrenal (HPA) axis, which plays a crucial role in stress response and sleep regulation; ion transport across membranes, vital for neuronal communication; and inhibitory neuronal regulation, essential for maintaining normal brain function. Furthermore, the ID-related genes are enriched for brain tissue and cortical cells, emphasizing their relevance in understanding the biological underpinnings of ID.</div></div>","PeriodicalId":54549,"journal":{"name":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","volume":"136 ","pages":"Article 111209"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gene expression is associated with brain function of insomnia disorder, rather than brain structure\",\"authors\":\"Haobo Zhang , Haonan Sun , Jiatao Li , Zhangwei Lv , Yun Tian , Xu Lei\",\"doi\":\"10.1016/j.pnpbp.2024.111209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Previous research has found brain structural and functional abnormalities in patients with insomnia disorder (ID). However, the relationship between brain abnormalities in ID and brain gene expression is unclear. This study explored the relationship between gene expression and brain structural or functional abnormalities in ID, and we validated the reliability of the results with two independent datasets (discover dataset: healthy control (HC) = 129, ID = 264; validation dataset: HC = 160, ID = 115). Brain imaging results show that ID has abnormal resting-state spontaneous activity, regional homogeneity, and widespread gray matter volume reduction compared to HC. The association analysis results with gene expression further revealed that brain function abnormalities in ID were significantly associated with gene expression, but structural abnormalities were not. This study establishes a link between transcriptional changes and brain functional abnormalities in ID, revealing a genetic basis that may involve several biological pathways. Specifically, these pathways include hormonal regulation of the hypothalamic-pituitary-adrenal (HPA) axis, which plays a crucial role in stress response and sleep regulation; ion transport across membranes, vital for neuronal communication; and inhibitory neuronal regulation, essential for maintaining normal brain function. Furthermore, the ID-related genes are enriched for brain tissue and cortical cells, emphasizing their relevance in understanding the biological underpinnings of ID.</div></div>\",\"PeriodicalId\":54549,\"journal\":{\"name\":\"Progress in Neuro-Psychopharmacology & Biological Psychiatry\",\"volume\":\"136 \",\"pages\":\"Article 111209\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Neuro-Psychopharmacology & Biological Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S027858462400277X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S027858462400277X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Gene expression is associated with brain function of insomnia disorder, rather than brain structure
Previous research has found brain structural and functional abnormalities in patients with insomnia disorder (ID). However, the relationship between brain abnormalities in ID and brain gene expression is unclear. This study explored the relationship between gene expression and brain structural or functional abnormalities in ID, and we validated the reliability of the results with two independent datasets (discover dataset: healthy control (HC) = 129, ID = 264; validation dataset: HC = 160, ID = 115). Brain imaging results show that ID has abnormal resting-state spontaneous activity, regional homogeneity, and widespread gray matter volume reduction compared to HC. The association analysis results with gene expression further revealed that brain function abnormalities in ID were significantly associated with gene expression, but structural abnormalities were not. This study establishes a link between transcriptional changes and brain functional abnormalities in ID, revealing a genetic basis that may involve several biological pathways. Specifically, these pathways include hormonal regulation of the hypothalamic-pituitary-adrenal (HPA) axis, which plays a crucial role in stress response and sleep regulation; ion transport across membranes, vital for neuronal communication; and inhibitory neuronal regulation, essential for maintaining normal brain function. Furthermore, the ID-related genes are enriched for brain tissue and cortical cells, emphasizing their relevance in understanding the biological underpinnings of ID.
期刊介绍:
Progress in Neuro-Psychopharmacology & Biological Psychiatry is an international and multidisciplinary journal which aims to ensure the rapid publication of authoritative reviews and research papers dealing with experimental and clinical aspects of neuro-psychopharmacology and biological psychiatry. Issues of the journal are regularly devoted wholly in or in part to a topical subject.
Progress in Neuro-Psychopharmacology & Biological Psychiatry does not publish work on the actions of biological extracts unless the pharmacological active molecular substrate and/or specific receptor binding properties of the extract compounds are elucidated.