仿生襟翼对垂直轴风力机气动性能的增强。

IF 3.1 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY Bioinspiration & Biomimetics Pub Date : 2024-12-16 DOI:10.1088/1748-3190/ad9a45
Sangwoo Ahnn, Hyeongmin Kim, Haecheon Choi
{"title":"仿生襟翼对垂直轴风力机气动性能的增强。","authors":"Sangwoo Ahnn, Hyeongmin Kim, Haecheon Choi","doi":"10.1088/1748-3190/ad9a45","DOIUrl":null,"url":null,"abstract":"<p><p>We improve the aerodynamic performance of a simplified vertical-axis wind turbine (VAWT) using a biomimetic flap, inspired by the movement of secondary feathers of a bird's wing at landing (Liebe 1979<i>Aerokurier</i><b>12</b>54). The VAWT considered has three NACA0018 straight blades at the Reynolds number of80000based on the turbine diameter and free-stream velocity. The biomimetic flap is made of a rigid rectangular curved plate, and its streamwise length is 0.2<i>c</i>and axial (spanwise) length is the same as that of blade, where<i>c</i>is the blade chord length. This device is installed on the inner surface of each blade. Its one side is attached near the blade leading edge (pivot point), and the other side automatically rotates around the pivot point (without external power input) in response to the surrounding flow field during blade rotation. The flap increases the time-averaged power coefficient by 88% at the tip-speed ratio of 0.8, when its pivot point is at 0.1<i>c</i>downstream from the blade leading edge. While the torque on the blade itself does not change even in the presence of the flap, the flap itself generates additional torque, thus increasing the overall power coefficient. The phase analysis indicates that the power coefficient of VAWT significantly increases during flap opening to full deployment through the interaction with vortices separated from the blade leading edge. When the pivot point of flap is farther downstream from the leading edge or the flap operates at a high tip-speed ratio, the performance of the flap diminishes due to its weaker interaction with the separating vortices.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aerodynamic performance enhancement of a vertical-axis wind turbine by a biomimetic flap.\",\"authors\":\"Sangwoo Ahnn, Hyeongmin Kim, Haecheon Choi\",\"doi\":\"10.1088/1748-3190/ad9a45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We improve the aerodynamic performance of a simplified vertical-axis wind turbine (VAWT) using a biomimetic flap, inspired by the movement of secondary feathers of a bird's wing at landing (Liebe 1979<i>Aerokurier</i><b>12</b>54). The VAWT considered has three NACA0018 straight blades at the Reynolds number of80000based on the turbine diameter and free-stream velocity. The biomimetic flap is made of a rigid rectangular curved plate, and its streamwise length is 0.2<i>c</i>and axial (spanwise) length is the same as that of blade, where<i>c</i>is the blade chord length. This device is installed on the inner surface of each blade. Its one side is attached near the blade leading edge (pivot point), and the other side automatically rotates around the pivot point (without external power input) in response to the surrounding flow field during blade rotation. The flap increases the time-averaged power coefficient by 88% at the tip-speed ratio of 0.8, when its pivot point is at 0.1<i>c</i>downstream from the blade leading edge. While the torque on the blade itself does not change even in the presence of the flap, the flap itself generates additional torque, thus increasing the overall power coefficient. The phase analysis indicates that the power coefficient of VAWT significantly increases during flap opening to full deployment through the interaction with vortices separated from the blade leading edge. When the pivot point of flap is farther downstream from the leading edge or the flap operates at a high tip-speed ratio, the performance of the flap diminishes due to its weaker interaction with the separating vortices.</p>\",\"PeriodicalId\":55377,\"journal\":{\"name\":\"Bioinspiration & Biomimetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinspiration & Biomimetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-3190/ad9a45\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/ad9a45","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们使用仿生襟翼改进了简化垂直轴风力涡轮机(VAWT)的空气动力学性能,灵感来自于鸟类在着陆时翅膀上的次级羽毛的运动(Liebe 1979)。考虑的VAWT有三个NACA0018直叶片,基于涡轮直径和自由流速度,雷诺数为80000。仿生襟翼由刚性矩形弯曲板构成,其流向长度为0.2c,轴向(展向)长度与叶片相同,其中为叶片弦长。该装置安装在每个叶片的内表面。它的一侧附着在叶片前缘(枢轴点)附近,另一侧在叶片旋转时响应周围流场自动围绕枢轴点旋转(不需要外部电源输入)。当叶尖速比为0.8时,当其枢轴点位于叶片前缘下游0.1c处时,襟翼的时间平均功率系数提高了88%。即使有襟翼存在,叶片本身的扭矩也不会改变,但襟翼本身会产生额外的扭矩,从而增加了整体功率系数。相位分析表明,在襟翼张开至充分展开期间,通过与叶片前缘分离的涡的相互作用,VAWT的功率系数显著增加。当襟翼支点在前缘较下游位置或襟翼在较高的叶尖速比下工作时,由于与分离涡的相互作用较弱,襟翼的性能下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aerodynamic performance enhancement of a vertical-axis wind turbine by a biomimetic flap.

We improve the aerodynamic performance of a simplified vertical-axis wind turbine (VAWT) using a biomimetic flap, inspired by the movement of secondary feathers of a bird's wing at landing (Liebe 1979Aerokurier1254). The VAWT considered has three NACA0018 straight blades at the Reynolds number of80000based on the turbine diameter and free-stream velocity. The biomimetic flap is made of a rigid rectangular curved plate, and its streamwise length is 0.2cand axial (spanwise) length is the same as that of blade, wherecis the blade chord length. This device is installed on the inner surface of each blade. Its one side is attached near the blade leading edge (pivot point), and the other side automatically rotates around the pivot point (without external power input) in response to the surrounding flow field during blade rotation. The flap increases the time-averaged power coefficient by 88% at the tip-speed ratio of 0.8, when its pivot point is at 0.1cdownstream from the blade leading edge. While the torque on the blade itself does not change even in the presence of the flap, the flap itself generates additional torque, thus increasing the overall power coefficient. The phase analysis indicates that the power coefficient of VAWT significantly increases during flap opening to full deployment through the interaction with vortices separated from the blade leading edge. When the pivot point of flap is farther downstream from the leading edge or the flap operates at a high tip-speed ratio, the performance of the flap diminishes due to its weaker interaction with the separating vortices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioinspiration & Biomimetics
Bioinspiration & Biomimetics 工程技术-材料科学:生物材料
CiteScore
5.90
自引率
14.70%
发文量
132
审稿时长
3 months
期刊介绍: Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology. The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include: Systems, designs and structure Communication and navigation Cooperative behaviour Self-organizing biological systems Self-healing and self-assembly Aerial locomotion and aerospace applications of biomimetics Biomorphic surface and subsurface systems Marine dynamics: swimming and underwater dynamics Applications of novel materials Biomechanics; including movement, locomotion, fluidics Cellular behaviour Sensors and senses Biomimetic or bioinformed approaches to geological exploration.
期刊最新文献
A numerical approach to model and analyse geometric characteristics of a grey-headed albatross aerofoil in flight. Plant-inspired decentralized controller for robust orientation control of soft robotic manipulators. CPG-based neural control of peristaltic planar locomotion in an earthworm-like robot: evaluation of nonlinear oscillators. Using deep reinforcement learning to investigate stretch feedback during swimming of the lamprey. Flapping dynamics and wing flexibility enhance odor detection in blue bottle flies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1