一个三节点图灵基因回路在细菌中形成周期性的空间模式。

Cell systems Pub Date : 2024-12-18 Epub Date: 2024-12-02 DOI:10.1016/j.cels.2024.11.002
Jure Tica, Martina Oliver Huidobro, Tong Zhu, Georg K A Wachter, Roozbeh H Pazuki, Dario G Bazzoli, Natalie S Scholes, Elisa Tonello, Heike Siebert, Michael P H Stumpf, Robert G Endres, Mark Isalan
{"title":"一个三节点图灵基因回路在细菌中形成周期性的空间模式。","authors":"Jure Tica, Martina Oliver Huidobro, Tong Zhu, Georg K A Wachter, Roozbeh H Pazuki, Dario G Bazzoli, Natalie S Scholes, Elisa Tonello, Heike Siebert, Michael P H Stumpf, Robert G Endres, Mark Isalan","doi":"10.1016/j.cels.2024.11.002","DOIUrl":null,"url":null,"abstract":"<p><p>Turing patterns are self-organizing systems that can form spots, stripes, or labyrinths. Proposed examples in tissue organization include zebrafish pigmentation, digit spacing, and many others. The theory of Turing patterns in biology has been debated because of their stringent fine-tuning requirements, where patterns only occur within a small subset of parameters. This has complicated the engineering of synthetic Turing gene circuits from first principles, although natural genetic Turing networks have been identified. Here, we engineered a synthetic genetic reaction-diffusion system where three nodes interact according to a non-classical Turing network with improved parametric robustness. The system reproducibly generated stationary, periodic, concentric stripe patterns in growing E. coli colonies. A partial differential equation model reproduced the patterns, with a Turing parameter regime obtained by fitting to experimental data. Our synthetic Turing system can contribute to nanotechnologies, such as patterned biomaterial deposition, and provide insights into developmental patterning programs. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"1123-1132.e3"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A three-node Turing gene circuit forms periodic spatial patterns in bacteria.\",\"authors\":\"Jure Tica, Martina Oliver Huidobro, Tong Zhu, Georg K A Wachter, Roozbeh H Pazuki, Dario G Bazzoli, Natalie S Scholes, Elisa Tonello, Heike Siebert, Michael P H Stumpf, Robert G Endres, Mark Isalan\",\"doi\":\"10.1016/j.cels.2024.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Turing patterns are self-organizing systems that can form spots, stripes, or labyrinths. Proposed examples in tissue organization include zebrafish pigmentation, digit spacing, and many others. The theory of Turing patterns in biology has been debated because of their stringent fine-tuning requirements, where patterns only occur within a small subset of parameters. This has complicated the engineering of synthetic Turing gene circuits from first principles, although natural genetic Turing networks have been identified. Here, we engineered a synthetic genetic reaction-diffusion system where three nodes interact according to a non-classical Turing network with improved parametric robustness. The system reproducibly generated stationary, periodic, concentric stripe patterns in growing E. coli colonies. A partial differential equation model reproduced the patterns, with a Turing parameter regime obtained by fitting to experimental data. Our synthetic Turing system can contribute to nanotechnologies, such as patterned biomaterial deposition, and provide insights into developmental patterning programs. A record of this paper's transparent peer review process is included in the supplemental information.</p>\",\"PeriodicalId\":93929,\"journal\":{\"name\":\"Cell systems\",\"volume\":\" \",\"pages\":\"1123-1132.e3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2024.11.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2024.11.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图灵图案是自组织系统,可以形成斑点、条纹或迷宫。在组织组织中提出的例子包括斑马鱼的色素沉着、手指间距和许多其他的例子。生物学中的图灵模式理论一直存在争议,因为它们具有严格的微调要求,其中模式只发生在一小部分参数中。这使得合成图灵基因电路的工程从第一性原理变得复杂,尽管自然遗传图灵网络已经被确定。在这里,我们设计了一个合成的遗传反应-扩散系统,其中三个节点根据具有改进参数鲁棒性的非经典图灵网络相互作用。该系统可重复地在生长的大肠杆菌菌落中产生固定的、周期性的、同心的条纹图案。偏微分方程模型再现了这些模式,并通过拟合实验数据获得了图灵参数区。我们的合成图灵系统可以为纳米技术做出贡献,例如图案化生物材料沉积,并为发育图案化程序提供见解。本文的透明同行评议过程记录包含在补充信息中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A three-node Turing gene circuit forms periodic spatial patterns in bacteria.

Turing patterns are self-organizing systems that can form spots, stripes, or labyrinths. Proposed examples in tissue organization include zebrafish pigmentation, digit spacing, and many others. The theory of Turing patterns in biology has been debated because of their stringent fine-tuning requirements, where patterns only occur within a small subset of parameters. This has complicated the engineering of synthetic Turing gene circuits from first principles, although natural genetic Turing networks have been identified. Here, we engineered a synthetic genetic reaction-diffusion system where three nodes interact according to a non-classical Turing network with improved parametric robustness. The system reproducibly generated stationary, periodic, concentric stripe patterns in growing E. coli colonies. A partial differential equation model reproduced the patterns, with a Turing parameter regime obtained by fitting to experimental data. Our synthetic Turing system can contribute to nanotechnologies, such as patterned biomaterial deposition, and provide insights into developmental patterning programs. A record of this paper's transparent peer review process is included in the supplemental information.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DeST-OT: Alignment of spatiotemporal transcriptomics data. Subspecies phylogeny in the human gut revealed by co-evolutionary constraints across the bacterial kingdom. Multiome Perturb-seq unlocks scalable discovery of integrated perturbation effects on the transcriptome and epigenome. Stochastic modeling of single-cell gene expression adaptation reveals non-genomic contribution to evolution of tumor subclones. Active learning of enhancers and silencers in the developing neural retina.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1