阐明亚慢性暴露于二氧化钛纳米颗粒在波斯龙头特有物种的植物毒性终点。

Chemosphere Pub Date : 2025-02-01 Epub Date: 2024-12-21 DOI:10.1016/j.chemosphere.2024.143853
Azam Chahardoli, Naser Karimi, Hamidreza Sharifan
{"title":"阐明亚慢性暴露于二氧化钛纳米颗粒在波斯龙头特有物种的植物毒性终点。","authors":"Azam Chahardoli, Naser Karimi, Hamidreza Sharifan","doi":"10.1016/j.chemosphere.2024.143853","DOIUrl":null,"url":null,"abstract":"<p><p>This study was designed to investigate the dichotomous effects of titanium dioxide nanoparticles (TiO<sub>2</sub>NPs) at varying concentrations (0, 50, 100, 1000, and 2500 ppm) on the physiological, biochemical, and antioxidative defense responses of Persian dragonhead plants cultivated in hydroponic conditions. Over 21 days of treatment, an increase in fresh shoot biomass by 26.2% and plant height by 18.2% was observed at exposure to 50 ppm TiO<sub>2</sub>NPs. Exposure to 100 ppm NPs negatively affected the biosynthesis of carotenoids, chlorophyll pigments (a, b, and total), and protein content. Field Emission Scanning Electron Microscopy (FE-SEM) and Transmission Electron Microscopy (TEM) analysis revealed TiO<sub>2</sub>NPs deposition within intercellular spaces and cell walls of root tissues. The physiological stress was prominent in response to 2500 ppm NPs as evidenced by a significant increase in proline and sugar content compared to the control. The enzymatic antioxidative defense was significantly upregulated by the enhanced activity of catalase (CAT) across exposure ranges 100-2500 ppm NPs, ascorbate peroxidase (APX) at 100 and 2500 ppm NPs, and peroxidase (POD) at 100 ppm NPs in plant roots. The antioxidant proficiency was further corroborated by increases in total flavonoids by 30.43% at 2500 ppm, saponins by 253.7%, and iridoids by 22.3% at 100 ppm NPs, relative to control. The results suggest that TiO<sub>2</sub>NPs fostered growth promotion at sub-lethal doses, and induced adverse biochemical changes at elevated concentrations, prompting the activation of intrinsic defense mechanisms to enhance plant resilience against NPs stresses. The optimal nano-stimulation performance was observed at 50 ppm TiO<sub>2</sub>NPs, which was suggested for the high yield targets, signifying a potential boon for agricultural productivity.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"143853"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elucidating the phytotoxic endpoints of sub-chronic exposure to titanium dioxide nanoparticles in Endemic Persian Dracocephalum species.\",\"authors\":\"Azam Chahardoli, Naser Karimi, Hamidreza Sharifan\",\"doi\":\"10.1016/j.chemosphere.2024.143853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study was designed to investigate the dichotomous effects of titanium dioxide nanoparticles (TiO<sub>2</sub>NPs) at varying concentrations (0, 50, 100, 1000, and 2500 ppm) on the physiological, biochemical, and antioxidative defense responses of Persian dragonhead plants cultivated in hydroponic conditions. Over 21 days of treatment, an increase in fresh shoot biomass by 26.2% and plant height by 18.2% was observed at exposure to 50 ppm TiO<sub>2</sub>NPs. Exposure to 100 ppm NPs negatively affected the biosynthesis of carotenoids, chlorophyll pigments (a, b, and total), and protein content. Field Emission Scanning Electron Microscopy (FE-SEM) and Transmission Electron Microscopy (TEM) analysis revealed TiO<sub>2</sub>NPs deposition within intercellular spaces and cell walls of root tissues. The physiological stress was prominent in response to 2500 ppm NPs as evidenced by a significant increase in proline and sugar content compared to the control. The enzymatic antioxidative defense was significantly upregulated by the enhanced activity of catalase (CAT) across exposure ranges 100-2500 ppm NPs, ascorbate peroxidase (APX) at 100 and 2500 ppm NPs, and peroxidase (POD) at 100 ppm NPs in plant roots. The antioxidant proficiency was further corroborated by increases in total flavonoids by 30.43% at 2500 ppm, saponins by 253.7%, and iridoids by 22.3% at 100 ppm NPs, relative to control. The results suggest that TiO<sub>2</sub>NPs fostered growth promotion at sub-lethal doses, and induced adverse biochemical changes at elevated concentrations, prompting the activation of intrinsic defense mechanisms to enhance plant resilience against NPs stresses. The optimal nano-stimulation performance was observed at 50 ppm TiO<sub>2</sub>NPs, which was suggested for the high yield targets, signifying a potential boon for agricultural productivity.</p>\",\"PeriodicalId\":93933,\"journal\":{\"name\":\"Chemosphere\",\"volume\":\" \",\"pages\":\"143853\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemosphere\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chemosphere.2024.143853\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chemosphere.2024.143853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在研究不同浓度(0、50、100、1000和2500 ppm)的二氧化钛纳米颗粒(TiO2NPs)对水培条件下波斯龙头植物的生理、生化和抗氧化防御反应的双重影响。在处理21 d时,暴露于50 ppm TiO2NPs的鲜梢生物量增加了26.2%,株高增加了18.2%。暴露于100ppm NPs对类胡萝卜素、叶绿素色素(a、b和总)和蛋白质含量的生物合成产生负面影响。场发射扫描电镜(FE-SEM)和透射电镜(TEM)分析显示,TiO2NPs沉积在根组织的细胞间隙和细胞壁内。与对照相比,脯氨酸和糖含量显著增加证明了2500 ppm NPs对生理胁迫的响应。植物根系过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)和过氧化物酶(POD)的活性在100ppm至2500ppm NPs暴露范围内显著升高。与对照相比,2500 ppm时总黄酮含量增加了30.43%,100 ppm时皂苷含量增加了253.7%,环烯醚酮含量增加了22.3%,进一步证实了抗氧化能力。结果表明,TiO2NPs在亚致死剂量下促进植物生长,在高浓度下诱导不利的生化变化,激活内在防御机制,增强植物对NPs胁迫的抵御能力。最佳的纳米增产效果在50 ppm的tio2纳米颗粒中观察到,这表明了高产目标,这表明了农业生产力的潜在好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Elucidating the phytotoxic endpoints of sub-chronic exposure to titanium dioxide nanoparticles in Endemic Persian Dracocephalum species.

This study was designed to investigate the dichotomous effects of titanium dioxide nanoparticles (TiO2NPs) at varying concentrations (0, 50, 100, 1000, and 2500 ppm) on the physiological, biochemical, and antioxidative defense responses of Persian dragonhead plants cultivated in hydroponic conditions. Over 21 days of treatment, an increase in fresh shoot biomass by 26.2% and plant height by 18.2% was observed at exposure to 50 ppm TiO2NPs. Exposure to 100 ppm NPs negatively affected the biosynthesis of carotenoids, chlorophyll pigments (a, b, and total), and protein content. Field Emission Scanning Electron Microscopy (FE-SEM) and Transmission Electron Microscopy (TEM) analysis revealed TiO2NPs deposition within intercellular spaces and cell walls of root tissues. The physiological stress was prominent in response to 2500 ppm NPs as evidenced by a significant increase in proline and sugar content compared to the control. The enzymatic antioxidative defense was significantly upregulated by the enhanced activity of catalase (CAT) across exposure ranges 100-2500 ppm NPs, ascorbate peroxidase (APX) at 100 and 2500 ppm NPs, and peroxidase (POD) at 100 ppm NPs in plant roots. The antioxidant proficiency was further corroborated by increases in total flavonoids by 30.43% at 2500 ppm, saponins by 253.7%, and iridoids by 22.3% at 100 ppm NPs, relative to control. The results suggest that TiO2NPs fostered growth promotion at sub-lethal doses, and induced adverse biochemical changes at elevated concentrations, prompting the activation of intrinsic defense mechanisms to enhance plant resilience against NPs stresses. The optimal nano-stimulation performance was observed at 50 ppm TiO2NPs, which was suggested for the high yield targets, signifying a potential boon for agricultural productivity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bacteriophages carry auxiliary metabolic genes related to energy, sulfur and phosphorus metabolism during a harmful algal bloom in a freshwater lake. Elucidating the phytotoxic endpoints of sub-chronic exposure to titanium dioxide nanoparticles in Endemic Persian Dracocephalum species. Retraction notice to "Simultaneous determination of hydrochlorothiazide, amlodipine, and telmisartan with spectrophotometric and HPLC green chemistry applications"[Chemosphere 303 (2022) 135074]. Phytoremediation evaluation of forever chemicals using hemp (Cannabis sativa L.): Pollen bioaccumulation and the risk to bees. Removal of sulfonamides by persulfate-based advanced oxidation: A mini review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1