客户细分采用飞狐优化算法

IF 0.9 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Combinatorial Optimization Pub Date : 2024-12-04 DOI:10.1007/s10878-024-01243-6
Konstantinos Zervoudakis, Stelios Tsafarakis
{"title":"客户细分采用飞狐优化算法","authors":"Konstantinos Zervoudakis, Stelios Tsafarakis","doi":"10.1007/s10878-024-01243-6","DOIUrl":null,"url":null,"abstract":"<p>Customer segmentation, a critical strategy in marketing, involves grouping consumers based on shared characteristics like age, income, and geographical location, enabling firms to effectively establish different strategies depending on the target group of customers. Clustering is a widely utilized data analysis technique that facilitates the identification of diverse groups, each distinguished by their unique set of characteristics. Traditional clustering techniques often lack in handling the complexity of consumer data. This paper introduces a novel approach employing the Flying Fox Optimization algorithm, inspired by the survival strategies of flying foxes, to determine customer segments. Applied to two different datasets, this method demonstrates superior capability in identifying distinct customer groups, thereby facilitating the development of targeted marketing strategies. Our comparative analysis with existing state-of-the-art as well as recently developed clustering methods reveals that the proposed method outperforms them in terms of segmentation capabilities. This research not only presents an innovative clustering technique in market segmentation but also showcases the potential of computational intelligence in improving marketing strategies, enhancing their alignment with each customer’s needs.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"78 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Customer segmentation using flying fox optimization algorithm\",\"authors\":\"Konstantinos Zervoudakis, Stelios Tsafarakis\",\"doi\":\"10.1007/s10878-024-01243-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Customer segmentation, a critical strategy in marketing, involves grouping consumers based on shared characteristics like age, income, and geographical location, enabling firms to effectively establish different strategies depending on the target group of customers. Clustering is a widely utilized data analysis technique that facilitates the identification of diverse groups, each distinguished by their unique set of characteristics. Traditional clustering techniques often lack in handling the complexity of consumer data. This paper introduces a novel approach employing the Flying Fox Optimization algorithm, inspired by the survival strategies of flying foxes, to determine customer segments. Applied to two different datasets, this method demonstrates superior capability in identifying distinct customer groups, thereby facilitating the development of targeted marketing strategies. Our comparative analysis with existing state-of-the-art as well as recently developed clustering methods reveals that the proposed method outperforms them in terms of segmentation capabilities. This research not only presents an innovative clustering technique in market segmentation but also showcases the potential of computational intelligence in improving marketing strategies, enhancing their alignment with each customer’s needs.</p>\",\"PeriodicalId\":50231,\"journal\":{\"name\":\"Journal of Combinatorial Optimization\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10878-024-01243-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-024-01243-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

客户细分是市场营销中的一项重要策略,它涉及到根据年龄、收入和地理位置等共同特征对消费者进行分组,使企业能够根据目标客户群有效地制定不同的策略。聚类是一种广泛使用的数据分析技术,它有助于识别不同的组,每个组都有其独特的特征集。传统的聚类技术通常在处理消费者数据的复杂性方面存在不足。本文从飞狐的生存策略出发,提出了一种利用飞狐优化算法确定客户细分的新方法。应用于两个不同的数据集,该方法在识别不同的客户群体方面表现出卓越的能力,从而促进了目标营销策略的发展。我们与现有的最先进的以及最近开发的聚类方法的比较分析表明,所提出的方法在分割能力方面优于它们。这项研究不仅在市场细分中提出了一种创新的聚类技术,而且还展示了计算智能在改进营销策略方面的潜力,增强了它们与每个客户需求的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Customer segmentation using flying fox optimization algorithm

Customer segmentation, a critical strategy in marketing, involves grouping consumers based on shared characteristics like age, income, and geographical location, enabling firms to effectively establish different strategies depending on the target group of customers. Clustering is a widely utilized data analysis technique that facilitates the identification of diverse groups, each distinguished by their unique set of characteristics. Traditional clustering techniques often lack in handling the complexity of consumer data. This paper introduces a novel approach employing the Flying Fox Optimization algorithm, inspired by the survival strategies of flying foxes, to determine customer segments. Applied to two different datasets, this method demonstrates superior capability in identifying distinct customer groups, thereby facilitating the development of targeted marketing strategies. Our comparative analysis with existing state-of-the-art as well as recently developed clustering methods reveals that the proposed method outperforms them in terms of segmentation capabilities. This research not only presents an innovative clustering technique in market segmentation but also showcases the potential of computational intelligence in improving marketing strategies, enhancing their alignment with each customer’s needs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Combinatorial Optimization
Journal of Combinatorial Optimization 数学-计算机:跨学科应用
CiteScore
2.00
自引率
10.00%
发文量
83
审稿时长
6 months
期刊介绍: The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering. The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.
期刊最新文献
Social media actors: perception and optimization of influence across different types $$(K_{1}\vee {P_{t})}$$ -saturated graphs with minimum number of edges Advertising meets assortment planning: joint advertising and assortment optimization under multinomial logit model Recognizing integrality of weighted rectangles partitions An improved PTAS for covering targets with mobile sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1