全强盗反馈下随机单调k次模最大化贪心算法

IF 0.9 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Combinatorial Optimization Pub Date : 2024-12-04 DOI:10.1007/s10878-024-01240-9
Xin Sun, Tiande Guo, Congying Han, Hongyang Zhang
{"title":"全强盗反馈下随机单调k次模最大化贪心算法","authors":"Xin Sun, Tiande Guo, Congying Han, Hongyang Zhang","doi":"10.1007/s10878-024-01240-9","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we theoretically study the Combinatorial Multi-Armed Bandit problem with stochastic monotone <i>k</i>-submodular reward function under full-bandit feedback. In this setting, the decision-maker is allowed to select a super arm composed of multiple base arms in each round and then receives its <i>k</i>-submodular reward. The <i>k</i>-submodularity enriches the application scenarios of the problem we consider in contexts characterized by diverse options. We present two simple greedy algorithms for two budget constraints (total size and individual size) and provide the theoretical analysis for upper bound of the regret value. For the total size budget, the proposed algorithm achieves a <span>\\(\\frac{1}{2}\\)</span>-regret upper bound by <span>\\(\\tilde{\\mathcal {O}}\\left( T^\\frac{2}{3}(kn)^{\\frac{1}{3}}B\\right) \\)</span> where <i>T</i> is the time horizon, <i>n</i> is the number of base arms and <i>B</i> denotes the budget. For the individual size budget, the proposed algorithm achieves a <span>\\(\\frac{1}{3}\\)</span>-regret with the same upper bound. Moreover, we conduct numerical experiments on these two algorithms to empirically demonstrate the effectiveness.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"37 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Greedy algorithms for stochastic monotone k-submodular maximization under full-bandit feedback\",\"authors\":\"Xin Sun, Tiande Guo, Congying Han, Hongyang Zhang\",\"doi\":\"10.1007/s10878-024-01240-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we theoretically study the Combinatorial Multi-Armed Bandit problem with stochastic monotone <i>k</i>-submodular reward function under full-bandit feedback. In this setting, the decision-maker is allowed to select a super arm composed of multiple base arms in each round and then receives its <i>k</i>-submodular reward. The <i>k</i>-submodularity enriches the application scenarios of the problem we consider in contexts characterized by diverse options. We present two simple greedy algorithms for two budget constraints (total size and individual size) and provide the theoretical analysis for upper bound of the regret value. For the total size budget, the proposed algorithm achieves a <span>\\\\(\\\\frac{1}{2}\\\\)</span>-regret upper bound by <span>\\\\(\\\\tilde{\\\\mathcal {O}}\\\\left( T^\\\\frac{2}{3}(kn)^{\\\\frac{1}{3}}B\\\\right) \\\\)</span> where <i>T</i> is the time horizon, <i>n</i> is the number of base arms and <i>B</i> denotes the budget. For the individual size budget, the proposed algorithm achieves a <span>\\\\(\\\\frac{1}{3}\\\\)</span>-regret with the same upper bound. Moreover, we conduct numerical experiments on these two algorithms to empirically demonstrate the effectiveness.</p>\",\"PeriodicalId\":50231,\"journal\":{\"name\":\"Journal of Combinatorial Optimization\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10878-024-01240-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-024-01240-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文从理论上研究了全强盗反馈下具有随机单调k次模奖励函数的组合多臂强盗问题。在这种情况下,决策者可以在每轮中选择一个由多个基本臂组成的超级臂,然后获得k-亚模奖励。k-子模块化丰富了我们在具有多种选项的环境中考虑的问题的应用场景。提出了两种预算约束(总尺寸和个体尺寸)下的简单贪心算法,并对后悔值的上界进行了理论分析。对于总规模预算,本文算法通过\(\tilde{\mathcal {O}}\left( T^\frac{2}{3}(kn)^{\frac{1}{3}}B\right) \)实现\(\frac{1}{2}\) -遗憾上界,其中T为时间范围,n为基础臂数,B为预算。对于个体大小预算,该算法实现了具有相同上界的\(\frac{1}{3}\) -遗憾。并对这两种算法进行了数值实验,实证验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Greedy algorithms for stochastic monotone k-submodular maximization under full-bandit feedback

In this paper, we theoretically study the Combinatorial Multi-Armed Bandit problem with stochastic monotone k-submodular reward function under full-bandit feedback. In this setting, the decision-maker is allowed to select a super arm composed of multiple base arms in each round and then receives its k-submodular reward. The k-submodularity enriches the application scenarios of the problem we consider in contexts characterized by diverse options. We present two simple greedy algorithms for two budget constraints (total size and individual size) and provide the theoretical analysis for upper bound of the regret value. For the total size budget, the proposed algorithm achieves a \(\frac{1}{2}\)-regret upper bound by \(\tilde{\mathcal {O}}\left( T^\frac{2}{3}(kn)^{\frac{1}{3}}B\right) \) where T is the time horizon, n is the number of base arms and B denotes the budget. For the individual size budget, the proposed algorithm achieves a \(\frac{1}{3}\)-regret with the same upper bound. Moreover, we conduct numerical experiments on these two algorithms to empirically demonstrate the effectiveness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Combinatorial Optimization
Journal of Combinatorial Optimization 数学-计算机:跨学科应用
CiteScore
2.00
自引率
10.00%
发文量
83
审稿时长
6 months
期刊介绍: The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering. The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.
期刊最新文献
Social media actors: perception and optimization of influence across different types $$(K_{1}\vee {P_{t})}$$ -saturated graphs with minimum number of edges Advertising meets assortment planning: joint advertising and assortment optimization under multinomial logit model Recognizing integrality of weighted rectangles partitions An improved PTAS for covering targets with mobile sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1