基于反设计的亚波长宽带光捕获稳态红外伪装和防伪技术

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Physics Pub Date : 2025-01-01 DOI:10.1016/j.mtphys.2024.101614
Dongjie Zhou , Jinguo Zhang , Liyan Li , Chong Tan , Zongkun Zhang , Yan Sun , Lei Zhou , Ning Dai , Junhao Chu , Jiaming Hao
{"title":"基于反设计的亚波长宽带光捕获稳态红外伪装和防伪技术","authors":"Dongjie Zhou ,&nbsp;Jinguo Zhang ,&nbsp;Liyan Li ,&nbsp;Chong Tan ,&nbsp;Zongkun Zhang ,&nbsp;Yan Sun ,&nbsp;Lei Zhou ,&nbsp;Ning Dai ,&nbsp;Junhao Chu ,&nbsp;Jiaming Hao","doi":"10.1016/j.mtphys.2024.101614","DOIUrl":null,"url":null,"abstract":"<div><div>Broadband mid-infrared (MIR) light harvesting is critical for a wide range of applications, including thermophotovoltaic conversion, thermal sensing and imaging, infrared camouflage and anti-counterfeiting technologies. In this study, we present the design and experimental validation of a deep-subwavelength broadband MIR light-harvesting metacoating (MMC), optimized through a genetic algorithm (GA)-based inverse design approach. The strength of this approach lies in its ability to automate and optimize the complex multilayer structure, encompassing both material selection and structural thickness, thereby achieving unparalleled performance in broadband MIR light absorption, with an average absorbance of approximately 0.85 across the 3–13 μm spectral range and nearly perfect absorption within the 4–12 μm range. This exceptional performance is attributed to strong electromagnetic localization within its multilayer configuration, facilitating efficient energy dissipation via high-loss materials such as bismuth and titanium. Notably, the MMC exhibits robust performance with respect to angle and polarization variations, maintaining high absorbance even at incident angles up to 70°. Its large-area fabrication capabilities and compatibility with various substrates further enhance its practical applicability. Two specific applications, long-wavelength infrared camouflage and anti-counterfeiting, highlight its potential for real-world deployment. In these applications, the MMC seamlessly integrates into high-emission environments and enables the modulation of patterned infrared emission, providing a lithography-free, cost-effective solution compared to conventional methods relying on artificially engineered structures. This work underscores the versatility of the developed MMC for a diverse array of MIR applications, ranging from camouflage technologies to advanced security measures.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"50 ","pages":"Article 101614"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subwavelength broadband light-harvesting metacoating for infrared camouflage and anti-counterfeiting empowered by inverse design\",\"authors\":\"Dongjie Zhou ,&nbsp;Jinguo Zhang ,&nbsp;Liyan Li ,&nbsp;Chong Tan ,&nbsp;Zongkun Zhang ,&nbsp;Yan Sun ,&nbsp;Lei Zhou ,&nbsp;Ning Dai ,&nbsp;Junhao Chu ,&nbsp;Jiaming Hao\",\"doi\":\"10.1016/j.mtphys.2024.101614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Broadband mid-infrared (MIR) light harvesting is critical for a wide range of applications, including thermophotovoltaic conversion, thermal sensing and imaging, infrared camouflage and anti-counterfeiting technologies. In this study, we present the design and experimental validation of a deep-subwavelength broadband MIR light-harvesting metacoating (MMC), optimized through a genetic algorithm (GA)-based inverse design approach. The strength of this approach lies in its ability to automate and optimize the complex multilayer structure, encompassing both material selection and structural thickness, thereby achieving unparalleled performance in broadband MIR light absorption, with an average absorbance of approximately 0.85 across the 3–13 μm spectral range and nearly perfect absorption within the 4–12 μm range. This exceptional performance is attributed to strong electromagnetic localization within its multilayer configuration, facilitating efficient energy dissipation via high-loss materials such as bismuth and titanium. Notably, the MMC exhibits robust performance with respect to angle and polarization variations, maintaining high absorbance even at incident angles up to 70°. Its large-area fabrication capabilities and compatibility with various substrates further enhance its practical applicability. Two specific applications, long-wavelength infrared camouflage and anti-counterfeiting, highlight its potential for real-world deployment. In these applications, the MMC seamlessly integrates into high-emission environments and enables the modulation of patterned infrared emission, providing a lithography-free, cost-effective solution compared to conventional methods relying on artificially engineered structures. This work underscores the versatility of the developed MMC for a diverse array of MIR applications, ranging from camouflage technologies to advanced security measures.</div></div>\",\"PeriodicalId\":18253,\"journal\":{\"name\":\"Materials Today Physics\",\"volume\":\"50 \",\"pages\":\"Article 101614\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542529324002906\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324002906","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

宽带中红外(MIR)光收集对于广泛的应用至关重要,包括热光伏转换、热传感和成像、红外伪装和防伪技术。在这项研究中,我们提出了一种深亚波长宽带MIR光收集亚镀膜(MMC)的设计和实验验证,并通过基于遗传算法(GA)的逆向设计方法进行了优化。这种方法的优势在于它能够自动化和优化复杂的多层结构,包括材料选择和结构厚度,从而在宽带MIR光吸收方面实现无与伦比的性能,在3-13 μm光谱范围内的平均吸光度约为0.85,在4-12 μm范围内的吸光度接近完美。这种卓越的性能归功于其多层结构中的强电磁定位,促进了高损耗材料(如铋和钛)的高效能量耗散。值得注意的是,MMC在角度和偏振变化方面表现出强大的性能,即使在入射角高达70°时也保持高吸光度。它的大面积制造能力和与各种基板的兼容性进一步增强了它的实用性。两个具体的应用,长波红外伪装和防伪,突出了其在现实世界中部署的潜力。在这些应用中,MMC可以无缝集成到高发射环境中,并实现红外发射的调制,与依赖人工工程结构的传统方法相比,提供了一种无光刻、经济高效的解决方案。这项工作强调了开发的MMC在多种MIR应用中的多功能性,从伪装技术到先进的安全措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Subwavelength broadband light-harvesting metacoating for infrared camouflage and anti-counterfeiting empowered by inverse design
Broadband mid-infrared (MIR) light harvesting is critical for a wide range of applications, including thermophotovoltaic conversion, thermal sensing and imaging, infrared camouflage and anti-counterfeiting technologies. In this study, we present the design and experimental validation of a deep-subwavelength broadband MIR light-harvesting metacoating (MMC), optimized through a genetic algorithm (GA)-based inverse design approach. The strength of this approach lies in its ability to automate and optimize the complex multilayer structure, encompassing both material selection and structural thickness, thereby achieving unparalleled performance in broadband MIR light absorption, with an average absorbance of approximately 0.85 across the 3–13 μm spectral range and nearly perfect absorption within the 4–12 μm range. This exceptional performance is attributed to strong electromagnetic localization within its multilayer configuration, facilitating efficient energy dissipation via high-loss materials such as bismuth and titanium. Notably, the MMC exhibits robust performance with respect to angle and polarization variations, maintaining high absorbance even at incident angles up to 70°. Its large-area fabrication capabilities and compatibility with various substrates further enhance its practical applicability. Two specific applications, long-wavelength infrared camouflage and anti-counterfeiting, highlight its potential for real-world deployment. In these applications, the MMC seamlessly integrates into high-emission environments and enables the modulation of patterned infrared emission, providing a lithography-free, cost-effective solution compared to conventional methods relying on artificially engineered structures. This work underscores the versatility of the developed MMC for a diverse array of MIR applications, ranging from camouflage technologies to advanced security measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
期刊最新文献
NEA GaAs Photocathode for Electron Source: From Growth, Cleaning, Activation to Performance Abnormal thermal conductivity increase in β-Ga2O3 by an unconventional bonding mechanism using machine-learning potential MXene Nb2C/MoS2 heterostructure: Nonlinear optical properties and a new broadband saturable absorber for ultrafast photonics Low-temperature annealing induces superior shock-resistant performance in FeCoCrNiCu high-entropy alloy Effectively tuning phonon transport across Al/nonmetal interfaces through controlling interfacial bonding strength without modifying thermal conductivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1