CLIP-Powered TASS:目标感知的视听问答单流网络

IF 11.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Computer Vision Pub Date : 2024-12-05 DOI:10.1007/s11263-024-02289-z
Yuanyuan Jiang, Jianqin Yin
{"title":"CLIP-Powered TASS:目标感知的视听问答单流网络","authors":"Yuanyuan Jiang, Jianqin Yin","doi":"10.1007/s11263-024-02289-z","DOIUrl":null,"url":null,"abstract":"<p>While vision-language pretrained models (VLMs) excel in various multimodal understanding tasks, their potential in fine-grained audio-visual reasoning, particularly for audio-visual question answering (AVQA), remains largely unexplored. AVQA presents specific challenges for VLMs due to the requirement of visual understanding at the region level and seamless integration with audio modality. Previous VLM-based AVQA methods merely used CLIP as a feature encoder but underutilized its knowledge, and mistreated audio and video as separate entities in a dual-stream framework as most AVQA methods. This paper proposes a new CLIP-powered target-aware single-stream (TASS) network for AVQA using the pretrained knowledge of the CLIP model through the audio-visual matching characteristic of nature. It consists of two key components: the target-aware spatial grounding module (TSG+) and the single-stream joint temporal grounding module (JTG). Specifically, TSG+ module transfers the image-text matching knowledge from CLIP models to the required region-text matching process without corresponding ground-truth labels. Moreover, unlike previous separate dual-stream networks that still required an additional audio-visual fusion module, JTG unifies audio-visual fusion and question-aware temporal grounding in a simplified single-stream architecture. It treats audio and video as a cohesive entity and further extends the image-text matching knowledge to audio-text matching by preserving their temporal correlation with our proposed cross-modal synchrony (CMS) loss. Besides, we propose a simple yet effective preprocessing strategy to optimize accuracy-efficiency trade-offs. Extensive experiments conducted on the MUSIC-AVQA benchmark verified the effectiveness of our proposed method over existing state-of-the-art methods. The code is available at https://github.com/Bravo5542/CLIP-TASS.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"67 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CLIP-Powered TASS: Target-Aware Single-Stream Network for Audio-Visual Question Answering\",\"authors\":\"Yuanyuan Jiang, Jianqin Yin\",\"doi\":\"10.1007/s11263-024-02289-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>While vision-language pretrained models (VLMs) excel in various multimodal understanding tasks, their potential in fine-grained audio-visual reasoning, particularly for audio-visual question answering (AVQA), remains largely unexplored. AVQA presents specific challenges for VLMs due to the requirement of visual understanding at the region level and seamless integration with audio modality. Previous VLM-based AVQA methods merely used CLIP as a feature encoder but underutilized its knowledge, and mistreated audio and video as separate entities in a dual-stream framework as most AVQA methods. This paper proposes a new CLIP-powered target-aware single-stream (TASS) network for AVQA using the pretrained knowledge of the CLIP model through the audio-visual matching characteristic of nature. It consists of two key components: the target-aware spatial grounding module (TSG+) and the single-stream joint temporal grounding module (JTG). Specifically, TSG+ module transfers the image-text matching knowledge from CLIP models to the required region-text matching process without corresponding ground-truth labels. Moreover, unlike previous separate dual-stream networks that still required an additional audio-visual fusion module, JTG unifies audio-visual fusion and question-aware temporal grounding in a simplified single-stream architecture. It treats audio and video as a cohesive entity and further extends the image-text matching knowledge to audio-text matching by preserving their temporal correlation with our proposed cross-modal synchrony (CMS) loss. Besides, we propose a simple yet effective preprocessing strategy to optimize accuracy-efficiency trade-offs. Extensive experiments conducted on the MUSIC-AVQA benchmark verified the effectiveness of our proposed method over existing state-of-the-art methods. The code is available at https://github.com/Bravo5542/CLIP-TASS.</p>\",\"PeriodicalId\":13752,\"journal\":{\"name\":\"International Journal of Computer Vision\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11263-024-02289-z\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02289-z","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

虽然视觉语言预训练模型(VLMs)在各种多模态理解任务中表现出色,但它们在细粒度视听推理,特别是视听问答(AVQA)方面的潜力仍未得到充分开发。AVQA对vlm提出了特殊的挑战,因为它需要在区域级别上进行视觉理解,并与音频模式无缝集成。以前基于vmm的AVQA方法仅仅使用CLIP作为特征编码器,但未充分利用其知识,并且像大多数AVQA方法一样,将音频和视频作为双流框架中的独立实体。本文通过自然的视听匹配特性,利用CLIP模型的预训练知识,提出了一种新的基于CLIP的目标感知单流(TASS)网络。它由两个关键组件组成:目标感知空间接地模块(TSG+)和单流联合时间接地模块(JTG)。具体来说,TSG+模块将CLIP模型的图像-文本匹配知识转移到所需的区域-文本匹配过程中,而不需要相应的真值标签。此外,与之前仍然需要额外的视听融合模块的独立双流网络不同,JTG在简化的单流架构中统一了视听融合和问题感知时间基础。它将音频和视频视为一个内聚的实体,并通过保留我们提出的跨模态同步(CMS)损失的时间相关性,进一步将图像-文本匹配知识扩展到音频-文本匹配。此外,我们提出了一种简单而有效的预处理策略来优化精度和效率之间的权衡。在MUSIC-AVQA基准上进行的大量实验验证了我们提出的方法比现有的最先进方法的有效性。代码可在https://github.com/Bravo5542/CLIP-TASS上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CLIP-Powered TASS: Target-Aware Single-Stream Network for Audio-Visual Question Answering

While vision-language pretrained models (VLMs) excel in various multimodal understanding tasks, their potential in fine-grained audio-visual reasoning, particularly for audio-visual question answering (AVQA), remains largely unexplored. AVQA presents specific challenges for VLMs due to the requirement of visual understanding at the region level and seamless integration with audio modality. Previous VLM-based AVQA methods merely used CLIP as a feature encoder but underutilized its knowledge, and mistreated audio and video as separate entities in a dual-stream framework as most AVQA methods. This paper proposes a new CLIP-powered target-aware single-stream (TASS) network for AVQA using the pretrained knowledge of the CLIP model through the audio-visual matching characteristic of nature. It consists of two key components: the target-aware spatial grounding module (TSG+) and the single-stream joint temporal grounding module (JTG). Specifically, TSG+ module transfers the image-text matching knowledge from CLIP models to the required region-text matching process without corresponding ground-truth labels. Moreover, unlike previous separate dual-stream networks that still required an additional audio-visual fusion module, JTG unifies audio-visual fusion and question-aware temporal grounding in a simplified single-stream architecture. It treats audio and video as a cohesive entity and further extends the image-text matching knowledge to audio-text matching by preserving their temporal correlation with our proposed cross-modal synchrony (CMS) loss. Besides, we propose a simple yet effective preprocessing strategy to optimize accuracy-efficiency trade-offs. Extensive experiments conducted on the MUSIC-AVQA benchmark verified the effectiveness of our proposed method over existing state-of-the-art methods. The code is available at https://github.com/Bravo5542/CLIP-TASS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Vision
International Journal of Computer Vision 工程技术-计算机:人工智能
CiteScore
29.80
自引率
2.10%
发文量
163
审稿时长
6 months
期刊介绍: The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs. Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision. Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community. Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas. In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives. The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research. Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.
期刊最新文献
Sample-Cohesive Pose-Aware Contrastive Facial Representation Learning Learning with Enriched Inductive Biases for Vision-Language Models Image Synthesis Under Limited Data: A Survey and Taxonomy Dual-Space Video Person Re-identification SeaFormer++: Squeeze-Enhanced Axial Transformer for Mobile Visual Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1