光谱结构:对比学习框架库排名和生成分子结构的红外光谱†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY Digital discovery Pub Date : 2024-10-17 DOI:10.1039/D4DD00135D
Ganesh Chandan Kanakala, Bhuvanesh Sridharan and U. Deva Priyakumar
{"title":"光谱结构:对比学习框架库排名和生成分子结构的红外光谱†","authors":"Ganesh Chandan Kanakala, Bhuvanesh Sridharan and U. Deva Priyakumar","doi":"10.1039/D4DD00135D","DOIUrl":null,"url":null,"abstract":"<p >Inferring complete molecular structure from infrared (IR) spectra is a challenging task. In this work, we propose SMEN (Spectra and Molecule Encoder Network), a framework for scoring molecules against given IR spectra. The proposed framework uses contrastive optimization to obtain similar embedding for a molecule and its spectra. For this study, we consider the QM9 dataset with molecules consisting of less than 9 heavy atoms and obtain simulated spectra. Using the proposed method, we can rank the molecules using embedding similarity and obtain a Top 1 accuracy of ∼81%, Top 3 accuracy of ∼96%, and Top 10 accuracy of ∼99% on the evaluation set. We extend SMEN to build a generative transformer for a direct molecule prediction from IR spectra. The proposed method can significantly help molecule library ranking tasks and aid the problem of inferring molecular structures from spectra.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 12","pages":" 2417-2423"},"PeriodicalIF":6.2000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00135d?page=search","citationCount":"0","resultStr":"{\"title\":\"Spectra to structure: contrastive learning framework for library ranking and generating molecular structures for infrared spectra†\",\"authors\":\"Ganesh Chandan Kanakala, Bhuvanesh Sridharan and U. Deva Priyakumar\",\"doi\":\"10.1039/D4DD00135D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Inferring complete molecular structure from infrared (IR) spectra is a challenging task. In this work, we propose SMEN (Spectra and Molecule Encoder Network), a framework for scoring molecules against given IR spectra. The proposed framework uses contrastive optimization to obtain similar embedding for a molecule and its spectra. For this study, we consider the QM9 dataset with molecules consisting of less than 9 heavy atoms and obtain simulated spectra. Using the proposed method, we can rank the molecules using embedding similarity and obtain a Top 1 accuracy of ∼81%, Top 3 accuracy of ∼96%, and Top 10 accuracy of ∼99% on the evaluation set. We extend SMEN to build a generative transformer for a direct molecule prediction from IR spectra. The proposed method can significantly help molecule library ranking tasks and aid the problem of inferring molecular structures from spectra.</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" 12\",\"pages\":\" 2417-2423\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00135d?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/dd/d4dd00135d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/dd/d4dd00135d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

从红外光谱推断完整的分子结构是一项具有挑战性的任务。在这项工作中,我们提出了光谱和分子编码器网络(光谱和分子编码器网络),这是一个根据给定的红外光谱对分子进行评分的框架。所提出的框架使用对比优化来获得分子及其光谱的相似嵌入。在本研究中,我们考虑了QM9数据集的分子组成少于9个重原子,并获得了模拟光谱。使用所提出的方法,我们可以使用嵌入相似度对分子进行排序,并在评估集上获得Top 1精度为~ 81%,Top 3精度为~ 96%,Top 10精度为~ 99%。我们扩展了sman,建立了一个生成变压器,用于从红外光谱直接预测分子。该方法对分子库排序任务和从光谱推断分子结构的问题具有重要的帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spectra to structure: contrastive learning framework for library ranking and generating molecular structures for infrared spectra†

Inferring complete molecular structure from infrared (IR) spectra is a challenging task. In this work, we propose SMEN (Spectra and Molecule Encoder Network), a framework for scoring molecules against given IR spectra. The proposed framework uses contrastive optimization to obtain similar embedding for a molecule and its spectra. For this study, we consider the QM9 dataset with molecules consisting of less than 9 heavy atoms and obtain simulated spectra. Using the proposed method, we can rank the molecules using embedding similarity and obtain a Top 1 accuracy of ∼81%, Top 3 accuracy of ∼96%, and Top 10 accuracy of ∼99% on the evaluation set. We extend SMEN to build a generative transformer for a direct molecule prediction from IR spectra. The proposed method can significantly help molecule library ranking tasks and aid the problem of inferring molecular structures from spectra.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Back cover Biophysics-guided uncertainty-aware deep learning uncovers high-affinity plastic-binding peptides Commit: Mini article for dynamic reporting of incremental improvements to previous scholarly work Artificial intelligence-assisted electrochemical sensors for qualitative and semi-quantitative multiplexed analyses† Exploring the expertise of large language models in materials science and metallurgical engineering†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1