基于异步消息传递和零阶优化的分布式学习在通信网络资源分配中的应用

IF 3 3区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Signal and Information Processing over Networks Pub Date : 2024-11-15 DOI:10.1109/TSIPN.2024.3487421
Pourya Behmandpoor;Marc Moonen;Panagiotis Patrinos
{"title":"基于异步消息传递和零阶优化的分布式学习在通信网络资源分配中的应用","authors":"Pourya Behmandpoor;Marc Moonen;Panagiotis Patrinos","doi":"10.1109/TSIPN.2024.3487421","DOIUrl":null,"url":null,"abstract":"Distributed learning and adaptation have received significant interest and found wide-ranging applications in machine learning and signal processing. While various approaches, such as shared-memory optimization, multi-task learning, and consensus-based learning (e.g., federated learning and learning over graphs), focus on optimizing either local costs or a global cost, there remains a need for further exploration of their interconnections. This paper specifically focuses on a scenario where agents collaborate towards a common task (i.e., optimizing a global cost equal to aggregated local costs) while effectively having distinct individual tasks (i.e., optimizing individual local parameters in a local cost). Each agent's actions can potentially impact other agents' performance through interactions. Notably, each agent has access to only its local zeroth-order oracle (i.e., cost function value) and shares scalar values, rather than gradient vectors, with other agents, leading to communication bandwidth efficiency and agent privacy. Agents employ zeroth-order optimization to update their parameters, and the asynchronous message-passing between them is subject to bounded but possibly random communication delays. This paper presents theoretical convergence analyses and establishes a convergence rate for nonconvex problems. Furthermore, it addresses the relevant use-case of deep learning-based resource allocation in communication networks and conducts numerical experiments in which agents, acting as transmitters, collaboratively train their individual policies to maximize a global reward, e.g., a sum of data rates.","PeriodicalId":56268,"journal":{"name":"IEEE Transactions on Signal and Information Processing over Networks","volume":"10 ","pages":"916-931"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asynchronous Message-Passing and Zeroth-Order Optimization Based Distributed Learning With a Use-Case in Resource Allocation in Communication Networks\",\"authors\":\"Pourya Behmandpoor;Marc Moonen;Panagiotis Patrinos\",\"doi\":\"10.1109/TSIPN.2024.3487421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed learning and adaptation have received significant interest and found wide-ranging applications in machine learning and signal processing. While various approaches, such as shared-memory optimization, multi-task learning, and consensus-based learning (e.g., federated learning and learning over graphs), focus on optimizing either local costs or a global cost, there remains a need for further exploration of their interconnections. This paper specifically focuses on a scenario where agents collaborate towards a common task (i.e., optimizing a global cost equal to aggregated local costs) while effectively having distinct individual tasks (i.e., optimizing individual local parameters in a local cost). Each agent's actions can potentially impact other agents' performance through interactions. Notably, each agent has access to only its local zeroth-order oracle (i.e., cost function value) and shares scalar values, rather than gradient vectors, with other agents, leading to communication bandwidth efficiency and agent privacy. Agents employ zeroth-order optimization to update their parameters, and the asynchronous message-passing between them is subject to bounded but possibly random communication delays. This paper presents theoretical convergence analyses and establishes a convergence rate for nonconvex problems. Furthermore, it addresses the relevant use-case of deep learning-based resource allocation in communication networks and conducts numerical experiments in which agents, acting as transmitters, collaboratively train their individual policies to maximize a global reward, e.g., a sum of data rates.\",\"PeriodicalId\":56268,\"journal\":{\"name\":\"IEEE Transactions on Signal and Information Processing over Networks\",\"volume\":\"10 \",\"pages\":\"916-931\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal and Information Processing over Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10755028/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal and Information Processing over Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10755028/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

分布式学习和自适应在机器学习和信号处理中得到了广泛的应用。虽然各种方法,如共享内存优化、多任务学习和基于共识的学习(例如,联邦学习和基于图的学习)都侧重于优化局部成本或全局成本,但仍需要进一步探索它们之间的相互关系。本文特别关注这样一种场景,即智能体协作完成共同任务(即优化全局成本等于聚合本地成本),同时有效地执行不同的单个任务(即在本地成本中优化单个本地参数)。每个代理的行为都可能通过交互影响其他代理的性能。值得注意的是,每个代理只能访问其局部零阶oracle(即成本函数值),并与其他代理共享标量值,而不是梯度向量,从而提高了通信带宽效率和代理隐私。代理使用零阶优化来更新它们的参数,它们之间的异步消息传递受到有限的但可能是随机的通信延迟的影响。本文对非凸问题进行了理论收敛分析,并建立了一个收敛速率。此外,它解决了通信网络中基于深度学习的资源分配的相关用例,并进行了数值实验,其中代理作为发射器,协同训练他们的个人策略以最大化全局奖励,例如,数据速率的总和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Asynchronous Message-Passing and Zeroth-Order Optimization Based Distributed Learning With a Use-Case in Resource Allocation in Communication Networks
Distributed learning and adaptation have received significant interest and found wide-ranging applications in machine learning and signal processing. While various approaches, such as shared-memory optimization, multi-task learning, and consensus-based learning (e.g., federated learning and learning over graphs), focus on optimizing either local costs or a global cost, there remains a need for further exploration of their interconnections. This paper specifically focuses on a scenario where agents collaborate towards a common task (i.e., optimizing a global cost equal to aggregated local costs) while effectively having distinct individual tasks (i.e., optimizing individual local parameters in a local cost). Each agent's actions can potentially impact other agents' performance through interactions. Notably, each agent has access to only its local zeroth-order oracle (i.e., cost function value) and shares scalar values, rather than gradient vectors, with other agents, leading to communication bandwidth efficiency and agent privacy. Agents employ zeroth-order optimization to update their parameters, and the asynchronous message-passing between them is subject to bounded but possibly random communication delays. This paper presents theoretical convergence analyses and establishes a convergence rate for nonconvex problems. Furthermore, it addresses the relevant use-case of deep learning-based resource allocation in communication networks and conducts numerical experiments in which agents, acting as transmitters, collaboratively train their individual policies to maximize a global reward, e.g., a sum of data rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Signal and Information Processing over Networks
IEEE Transactions on Signal and Information Processing over Networks Computer Science-Computer Networks and Communications
CiteScore
5.80
自引率
12.50%
发文量
56
期刊介绍: The IEEE Transactions on Signal and Information Processing over Networks publishes high-quality papers that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to processing of signals and information (data) defined over networks, potentially dynamically varying. In signal processing over networks, the topology of the network may define structural relationships in the data, or may constrain processing of the data. Topics include distributed algorithms for filtering, detection, estimation, adaptation and learning, model selection, data fusion, and diffusion or evolution of information over such networks, and applications of distributed signal processing.
期刊最新文献
Label Guided Graph Optimized Convolutional Network for Semi-Supervised Learning Event-Triggered Data-Driven Distributed LFC Using Controller-Dynamic-Linearization Method Robust Time-Varying Graph Signal Recovery for Dynamic Physical Sensor Network Data A Fixed-Time Convergent Distributed Algorithm for Time-Varying Optimal Resource Allocation Problem Memory-Enhanced Distributed Accelerated Algorithms for Coordinated Linear Computation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1