半导体量子阱中的高效非互易和非互易光子器件

IF 1.5 4区 物理与天体物理 Q3 OPTICS The European Physical Journal D Pub Date : 2024-12-04 DOI:10.1140/epjd/s10053-024-00937-0
Yunran Ge, Kang Zheng, Boxiang Fang, Chunling Ding, Xiangying Hao, Rui-Bo Jin
{"title":"半导体量子阱中的高效非互易和非互易光子器件","authors":"Yunran Ge,&nbsp;Kang Zheng,&nbsp;Boxiang Fang,&nbsp;Chunling Ding,&nbsp;Xiangying Hao,&nbsp;Rui-Bo Jin","doi":"10.1140/epjd/s10053-024-00937-0","DOIUrl":null,"url":null,"abstract":"<p>We propose theoretically a non-magnetic optical nonreciprocity (ONR) scheme with high efficiency by employing the four-wave mixing (FWM) effect in an asymmetric semiconductor three-coupled-quantum-well (TCQW) nanostructure. Nonreciprocal transmission and nonreciprocal phase shift in this TCQW, both with high transmission rates, can be achieved using suitable parameters. Considering an orbital-angular-momentum (OAM) probe beam, the perfect nonreciprocity can be obtained based on the highly efficient FWM. Furthermore, the integration of this TCQW nanostructure into a Mach–Zehnder interferometer enables the fabrication of highly efficient optical isolators and optical circulators by selecting appropriate parameters. The optical isolator exhibits an isolation ratio of 97.76 dB and an insertion loss of 0.25 dB, while the optical circulator demonstrates a fidelity of 0.9993 and a photon survival probability of 0.9517. Our approach based on semiconductor media has the advantages of easy fabrication and good integration with adjustable parameters. In conjunction with the distinctive characteristics of the OAM beam, our protocol offers a theoretical framework for the development of highly integrated and multi-dimensional nonreciprocity and nonreciprocal photonic devices.</p>","PeriodicalId":789,"journal":{"name":"The European Physical Journal D","volume":"78 12","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly efficient nonreciprocity and nonreciprocal photonic devices in a semiconductor quantum well\",\"authors\":\"Yunran Ge,&nbsp;Kang Zheng,&nbsp;Boxiang Fang,&nbsp;Chunling Ding,&nbsp;Xiangying Hao,&nbsp;Rui-Bo Jin\",\"doi\":\"10.1140/epjd/s10053-024-00937-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose theoretically a non-magnetic optical nonreciprocity (ONR) scheme with high efficiency by employing the four-wave mixing (FWM) effect in an asymmetric semiconductor three-coupled-quantum-well (TCQW) nanostructure. Nonreciprocal transmission and nonreciprocal phase shift in this TCQW, both with high transmission rates, can be achieved using suitable parameters. Considering an orbital-angular-momentum (OAM) probe beam, the perfect nonreciprocity can be obtained based on the highly efficient FWM. Furthermore, the integration of this TCQW nanostructure into a Mach–Zehnder interferometer enables the fabrication of highly efficient optical isolators and optical circulators by selecting appropriate parameters. The optical isolator exhibits an isolation ratio of 97.76 dB and an insertion loss of 0.25 dB, while the optical circulator demonstrates a fidelity of 0.9993 and a photon survival probability of 0.9517. Our approach based on semiconductor media has the advantages of easy fabrication and good integration with adjustable parameters. In conjunction with the distinctive characteristics of the OAM beam, our protocol offers a theoretical framework for the development of highly integrated and multi-dimensional nonreciprocity and nonreciprocal photonic devices.</p>\",\"PeriodicalId\":789,\"journal\":{\"name\":\"The European Physical Journal D\",\"volume\":\"78 12\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal D\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjd/s10053-024-00937-0\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal D","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjd/s10053-024-00937-0","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

在非对称半导体三耦合量子阱(TCQW)纳米结构中利用四波混频(FWM)效应,从理论上提出了一种高效率的非磁性光非互易(ONR)方案。在适当的参数下,可以实现高传输速率的非倒易传输和非倒易相移。考虑轨道-角动量(OAM)探测光束,基于高效的FWM可以获得完美的非互易性。此外,将该TCQW纳米结构集成到马赫-曾德干涉仪中,通过选择适当的参数,可以制造出高效的光隔离器和光环行器。光隔离器的隔离比为97.76 dB,插入损耗为0.25 dB,光环行器的保真度为0.9993,光子存活概率为0.9517。该方法基于半导体介质,具有制作简单、集成度好、参数可调等优点。结合OAM光束的独特特性,我们的协议为高度集成和多维非互易和非互易光子器件的发展提供了理论框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Highly efficient nonreciprocity and nonreciprocal photonic devices in a semiconductor quantum well

We propose theoretically a non-magnetic optical nonreciprocity (ONR) scheme with high efficiency by employing the four-wave mixing (FWM) effect in an asymmetric semiconductor three-coupled-quantum-well (TCQW) nanostructure. Nonreciprocal transmission and nonreciprocal phase shift in this TCQW, both with high transmission rates, can be achieved using suitable parameters. Considering an orbital-angular-momentum (OAM) probe beam, the perfect nonreciprocity can be obtained based on the highly efficient FWM. Furthermore, the integration of this TCQW nanostructure into a Mach–Zehnder interferometer enables the fabrication of highly efficient optical isolators and optical circulators by selecting appropriate parameters. The optical isolator exhibits an isolation ratio of 97.76 dB and an insertion loss of 0.25 dB, while the optical circulator demonstrates a fidelity of 0.9993 and a photon survival probability of 0.9517. Our approach based on semiconductor media has the advantages of easy fabrication and good integration with adjustable parameters. In conjunction with the distinctive characteristics of the OAM beam, our protocol offers a theoretical framework for the development of highly integrated and multi-dimensional nonreciprocity and nonreciprocal photonic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal D
The European Physical Journal D 物理-物理:原子、分子和化学物理
CiteScore
3.10
自引率
11.10%
发文量
213
审稿时长
3 months
期刊介绍: The European Physical Journal D (EPJ D) presents new and original research results in: Atomic Physics; Molecular Physics and Chemical Physics; Atomic and Molecular Collisions; Clusters and Nanostructures; Plasma Physics; Laser Cooling and Quantum Gas; Nonlinear Dynamics; Optical Physics; Quantum Optics and Quantum Information; Ultraintense and Ultrashort Laser Fields. The range of topics covered in these areas is extensive, from Molecular Interaction and Reactivity to Spectroscopy and Thermodynamics of Clusters, from Atomic Optics to Bose-Einstein Condensation to Femtochemistry.
期刊最新文献
Precision measurements of muonium and muonic helium hyperfine structure at J-PARC Semi-hadronic charge-parity violation interaction constants in CsAg, FrLi and FrAg molecules Dielectronic and tri-electronic recombination strengths of low-lying resonances and plasma rate coefficients for beryllium-like argon ions Electron and positron interactions and their applications: a tribute to Professor Michael Brunger Production and study of antideuterium with the GBAR beamline
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1