乙烯加成聚降冰片烯基阴离子交换膜及其半互穿聚合物网络用于水电解

IF 4.1 2区 化学 Q2 POLYMER SCIENCE Chinese Journal of Polymer Science Pub Date : 2024-11-07 DOI:10.1007/s10118-024-3225-2
Ting Wang, Yu Wang, Wei You
{"title":"乙烯加成聚降冰片烯基阴离子交换膜及其半互穿聚合物网络用于水电解","authors":"Ting Wang,&nbsp;Yu Wang,&nbsp;Wei You","doi":"10.1007/s10118-024-3225-2","DOIUrl":null,"url":null,"abstract":"<div><p>Anion-exchange membranes (AEMs) with high conductivity and stability are essential components of hydrogen related water electrolysis and fuel cell applications. During the past decades, polynorbornene (PNB)-based AEMs have shown excellent performance due to their saturated all-carbon-based backbones and diverse strategies to prepare cross-linked membranes. However, nearly all previously reported PNB-based AEMs rely on the alkyl-substituted norbornene monomers, whose low-yielding synthesis leads to high-cost of the AEMs. In addition, the cross-linked PNB-based AEMs usually suffered from mechanical brittleness. Herein, we propose a novel semi-interpenetrating polymer network (s-IPN) strategy to simultaneously enhance mechanical modulus and ionic conductivity, while using commercial 5-vinyl-2-norbornene (VNB) as the single norbornene derivatives to prepare high-performance AEMs. A diallylphenol quaternary ammonium salt was used for photo-induced cross-linking with poly-VNB and various dithiols to produce AEMs with s-IPN structures. The resultant membranes have excellent hydroxide conductivities and alkaline stability in 1 mol/L KOH at 80 °C, and are successfully applied in alkaline anion-exchange membrane water electrolyzers to stably operate for over 150 h.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 12","pages":"1888 - 1896"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vinylic-addition Polynorbornene-based Anion-Exchange Membranes with Semi-Interpenetrating Polymer Networks for Water Electrolysis\",\"authors\":\"Ting Wang,&nbsp;Yu Wang,&nbsp;Wei You\",\"doi\":\"10.1007/s10118-024-3225-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Anion-exchange membranes (AEMs) with high conductivity and stability are essential components of hydrogen related water electrolysis and fuel cell applications. During the past decades, polynorbornene (PNB)-based AEMs have shown excellent performance due to their saturated all-carbon-based backbones and diverse strategies to prepare cross-linked membranes. However, nearly all previously reported PNB-based AEMs rely on the alkyl-substituted norbornene monomers, whose low-yielding synthesis leads to high-cost of the AEMs. In addition, the cross-linked PNB-based AEMs usually suffered from mechanical brittleness. Herein, we propose a novel semi-interpenetrating polymer network (s-IPN) strategy to simultaneously enhance mechanical modulus and ionic conductivity, while using commercial 5-vinyl-2-norbornene (VNB) as the single norbornene derivatives to prepare high-performance AEMs. A diallylphenol quaternary ammonium salt was used for photo-induced cross-linking with poly-VNB and various dithiols to produce AEMs with s-IPN structures. The resultant membranes have excellent hydroxide conductivities and alkaline stability in 1 mol/L KOH at 80 °C, and are successfully applied in alkaline anion-exchange membrane water electrolyzers to stably operate for over 150 h.</p></div>\",\"PeriodicalId\":517,\"journal\":{\"name\":\"Chinese Journal of Polymer Science\",\"volume\":\"42 12\",\"pages\":\"1888 - 1896\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10118-024-3225-2\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-024-3225-2","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

阴离子交换膜(AEMs)具有高导电性和稳定性,是氢相关水电解和燃料电池应用的重要组成部分。在过去的几十年里,聚降冰片烯(PNB)基AEMs由于其饱和的全碳基骨架和不同的交联膜制备策略而表现出优异的性能。然而,几乎所有先前报道的基于pnb的AEMs都依赖于烷基取代降冰片烯单体,其合成收率低,导致AEMs的成本高。此外,交联pnb基AEMs通常存在机械脆性。在此,我们提出了一种新型的半互穿聚合物网络(s-IPN)策略,同时提高机械模量和离子电导率,同时使用商业5-乙烯基-2-降冰片烯(VNB)作为单一降冰片烯衍生物制备高性能AEMs。采用双烯丙基酚季铵盐与聚vnb和多种二硫醇进行光诱导交联制备了具有s-IPN结构的AEMs。制备的膜在80℃下,在1 mol/L KOH条件下具有良好的氢氧化物导电性和碱性稳定性,并成功应用于碱性阴离子交换膜水电解槽中,可稳定运行150 h以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vinylic-addition Polynorbornene-based Anion-Exchange Membranes with Semi-Interpenetrating Polymer Networks for Water Electrolysis

Anion-exchange membranes (AEMs) with high conductivity and stability are essential components of hydrogen related water electrolysis and fuel cell applications. During the past decades, polynorbornene (PNB)-based AEMs have shown excellent performance due to their saturated all-carbon-based backbones and diverse strategies to prepare cross-linked membranes. However, nearly all previously reported PNB-based AEMs rely on the alkyl-substituted norbornene monomers, whose low-yielding synthesis leads to high-cost of the AEMs. In addition, the cross-linked PNB-based AEMs usually suffered from mechanical brittleness. Herein, we propose a novel semi-interpenetrating polymer network (s-IPN) strategy to simultaneously enhance mechanical modulus and ionic conductivity, while using commercial 5-vinyl-2-norbornene (VNB) as the single norbornene derivatives to prepare high-performance AEMs. A diallylphenol quaternary ammonium salt was used for photo-induced cross-linking with poly-VNB and various dithiols to produce AEMs with s-IPN structures. The resultant membranes have excellent hydroxide conductivities and alkaline stability in 1 mol/L KOH at 80 °C, and are successfully applied in alkaline anion-exchange membrane water electrolyzers to stably operate for over 150 h.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Polymer Science
Chinese Journal of Polymer Science 化学-高分子科学
CiteScore
7.10
自引率
11.60%
发文量
218
审稿时长
6.0 months
期刊介绍: Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985. CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.
期刊最新文献
Boroxine Crystalline Covalent Organic Frameworks Based Single-ion Quasi-solid-state Conductor in Lithium-ion Battery CO2-Sourced Poly(chloropropylene carbonate) with High Flame-Retardant Performance Influence of the Type of Precipitant on the Structure of Phase-inversion Polyamido-imide Membranes Advancements and Applications of 4D Bioprinting in Biomedical Science Bio-based Epoxy Composites Demonstrating High Temperature Breakdown Strength and Thermal Conductivity for High Voltage Insulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1