{"title":"基于离散元法的新型链板土壤修复装置中土壤剂颗粒分布优化","authors":"Zhipeng Wang, Tong Zhu, Youzhao Wang, Dezheng Liu, Feng Ma, Chaoyue Zhao, Xu Li, Yanping Zhang","doi":"10.1007/s10035-024-01483-7","DOIUrl":null,"url":null,"abstract":"<div><p>To improve the working efficiency of in-situ soil remediation equipment, this paper designs a new type of chain plate soil remediation equipment based on the working principle and technical requirements. The mixing process of soil and chemicals under different parameters was investigated using the discrete element method and the orthogonal test method. The experimental designs were all based on horizontal movement speed, chain knife speed, screw speed, and homogeneous mixing pitch as test factors and discrete coefficient and soil fragmentation rate as indices. The test method uses a unidirectional test to determine the value of the reference centre level for the orthogonal test and a combined balancing method to determine and validate the optimum parameters of the soil remediation device. The optimised parameters were determined as follows: the horizontal movement speed of the mechanism is 0.15 m/s, the rotational speed of the chain knife is 5.25 m/s, the rotational speed of the screw is 187.5 rpm, and the homogeneous mixing pitch is 98 mm, respectively. The dispersion coefficient was reduced by 7.43% and the soil fragmentation rate increased by 5.45% compared to the operating parameters of the baseline group.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"27 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimisation of soil-agent particle distribution in a new chain plate soil remediation device based on discrete element method\",\"authors\":\"Zhipeng Wang, Tong Zhu, Youzhao Wang, Dezheng Liu, Feng Ma, Chaoyue Zhao, Xu Li, Yanping Zhang\",\"doi\":\"10.1007/s10035-024-01483-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To improve the working efficiency of in-situ soil remediation equipment, this paper designs a new type of chain plate soil remediation equipment based on the working principle and technical requirements. The mixing process of soil and chemicals under different parameters was investigated using the discrete element method and the orthogonal test method. The experimental designs were all based on horizontal movement speed, chain knife speed, screw speed, and homogeneous mixing pitch as test factors and discrete coefficient and soil fragmentation rate as indices. The test method uses a unidirectional test to determine the value of the reference centre level for the orthogonal test and a combined balancing method to determine and validate the optimum parameters of the soil remediation device. The optimised parameters were determined as follows: the horizontal movement speed of the mechanism is 0.15 m/s, the rotational speed of the chain knife is 5.25 m/s, the rotational speed of the screw is 187.5 rpm, and the homogeneous mixing pitch is 98 mm, respectively. The dispersion coefficient was reduced by 7.43% and the soil fragmentation rate increased by 5.45% compared to the operating parameters of the baseline group.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":49323,\"journal\":{\"name\":\"Granular Matter\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Granular Matter\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10035-024-01483-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-024-01483-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimisation of soil-agent particle distribution in a new chain plate soil remediation device based on discrete element method
To improve the working efficiency of in-situ soil remediation equipment, this paper designs a new type of chain plate soil remediation equipment based on the working principle and technical requirements. The mixing process of soil and chemicals under different parameters was investigated using the discrete element method and the orthogonal test method. The experimental designs were all based on horizontal movement speed, chain knife speed, screw speed, and homogeneous mixing pitch as test factors and discrete coefficient and soil fragmentation rate as indices. The test method uses a unidirectional test to determine the value of the reference centre level for the orthogonal test and a combined balancing method to determine and validate the optimum parameters of the soil remediation device. The optimised parameters were determined as follows: the horizontal movement speed of the mechanism is 0.15 m/s, the rotational speed of the chain knife is 5.25 m/s, the rotational speed of the screw is 187.5 rpm, and the homogeneous mixing pitch is 98 mm, respectively. The dispersion coefficient was reduced by 7.43% and the soil fragmentation rate increased by 5.45% compared to the operating parameters of the baseline group.
期刊介绍:
Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science.
These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations.
>> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa.
The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.