多维作战背景下防御监视掩蔽用紫外-可见-红外伪装纺织品的研究进展

IF 3.4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY International Journal of Mechanical and Materials Engineering Pub Date : 2024-12-05 DOI:10.1186/s40712-024-00182-8
Md. Anowar Hossain
{"title":"多维作战背景下防御监视掩蔽用紫外-可见-红外伪装纺织品的研究进展","authors":"Md. Anowar Hossain","doi":"10.1186/s40712-024-00182-8","DOIUrl":null,"url":null,"abstract":"<div><p>Target detection of defence technologies is being rapidly upgraded with modern surveillance technologies. The latest techniques of surveillance are already being implemented for defence applications. Self-protection and hiding from opposing forces are the key principles for the protection of special team in defence. Camouflage textiles aim to create confusing objects for target detection of military personnel. These textiles are applied for military protection such as clothing, weapons, vehicles and location hiding nets/tents. The urgent need for camouflage textiles has been formulated with a technical solution and implementation of the right camouflage materials for concealment of defence target signature against dry leaves, green leaves and tree bark-woodland combat background; water-marine combat background; sand-desertland combat background; stone-stoneland combat background; snow-snowland combat background; sky combat background; ice-iceland combat background; and concrete-concreteland combat background (DGTWSICB) in ultraviolet–visible-infrared (UV–Vis-IR) spectrums. This hypothesis of optical and surveillance engineering, digital imaging and hyperspectral imaging has been coalesced for the advancement of UV–Vis-IR-DGTWSICB camouflage textile technology. The principle of camouflage engineering has been approached by broader spectrum probes in UV–Vis-IR rather than Vis ranges only. Furthermore, camouflage materials, camouflage weapon designs, and formulations of camouflage textiles have been proposed for multidimensional CBs-DGTWSICB. The electromagnetic spectrum, reflection, electron energy, photonic signal and imaging mechanism in UV–Vis-IR have been presented for optical engineering of concealment, detection, recognition and identification of target signature against DGTWSICB. The spectrum relationship of camouflage materials and DGTWSICB materials has been illustrated and compared in UV–Vis-IR spectrums. Camouflage material design, method design and spectral design; textile colorants and technologies; adaptive camouflage; techniques for camouflage textile assessment for digital camera and hyperspectral camera imaging; image processing techniques; and a hierarchical model have been demonstrated for augmentation of camouflage textiles in UV–Vis-IR illumination. Therefore, the anticipated design of camouflage textiles may enhance high-performance innovation for modern surveillance of military protection related to digital camera, hyperspectral camera and radar. This hypothesis includes advanced guidelines for the advanced design of camouflage textiles for multidimensional CBs-DGTWSICB. The challenges, limitations, innovation and defence applications of camouflage engineering for multidimensional combat backgrounds have been coalesced for concealment, detection, recognition and identification of defence target signature.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00182-8","citationCount":"0","resultStr":"{\"title\":\"Advancement in UV-Visible-IR camouflage textiles for concealment of defence surveillance against multidimensional combat backgrounds\",\"authors\":\"Md. Anowar Hossain\",\"doi\":\"10.1186/s40712-024-00182-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Target detection of defence technologies is being rapidly upgraded with modern surveillance technologies. The latest techniques of surveillance are already being implemented for defence applications. Self-protection and hiding from opposing forces are the key principles for the protection of special team in defence. Camouflage textiles aim to create confusing objects for target detection of military personnel. These textiles are applied for military protection such as clothing, weapons, vehicles and location hiding nets/tents. The urgent need for camouflage textiles has been formulated with a technical solution and implementation of the right camouflage materials for concealment of defence target signature against dry leaves, green leaves and tree bark-woodland combat background; water-marine combat background; sand-desertland combat background; stone-stoneland combat background; snow-snowland combat background; sky combat background; ice-iceland combat background; and concrete-concreteland combat background (DGTWSICB) in ultraviolet–visible-infrared (UV–Vis-IR) spectrums. This hypothesis of optical and surveillance engineering, digital imaging and hyperspectral imaging has been coalesced for the advancement of UV–Vis-IR-DGTWSICB camouflage textile technology. The principle of camouflage engineering has been approached by broader spectrum probes in UV–Vis-IR rather than Vis ranges only. Furthermore, camouflage materials, camouflage weapon designs, and formulations of camouflage textiles have been proposed for multidimensional CBs-DGTWSICB. The electromagnetic spectrum, reflection, electron energy, photonic signal and imaging mechanism in UV–Vis-IR have been presented for optical engineering of concealment, detection, recognition and identification of target signature against DGTWSICB. The spectrum relationship of camouflage materials and DGTWSICB materials has been illustrated and compared in UV–Vis-IR spectrums. Camouflage material design, method design and spectral design; textile colorants and technologies; adaptive camouflage; techniques for camouflage textile assessment for digital camera and hyperspectral camera imaging; image processing techniques; and a hierarchical model have been demonstrated for augmentation of camouflage textiles in UV–Vis-IR illumination. Therefore, the anticipated design of camouflage textiles may enhance high-performance innovation for modern surveillance of military protection related to digital camera, hyperspectral camera and radar. This hypothesis includes advanced guidelines for the advanced design of camouflage textiles for multidimensional CBs-DGTWSICB. The challenges, limitations, innovation and defence applications of camouflage engineering for multidimensional combat backgrounds have been coalesced for concealment, detection, recognition and identification of defence target signature.</p></div>\",\"PeriodicalId\":592,\"journal\":{\"name\":\"International Journal of Mechanical and Materials Engineering\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00182-8\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical and Materials Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40712-024-00182-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40712-024-00182-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着现代监视技术的发展,国防目标探测技术正在迅速升级。最新的监视技术已经用于国防应用。自我保护和躲避敌对力量是防御特勤分队保护的关键原则。迷彩纺织品的目的是制造迷惑物体,以便军事人员探测目标。这些纺织品适用于军事保护,如服装,武器,车辆和位置隐藏网/帐篷。对伪装纺织品的迫切需求已经制定了技术解决方案,并实施了正确的伪装材料,以在干树叶,绿叶和树皮-林地战斗背景下隐藏防御目标签名;水-海作战背景;沙漠作战背景;Stone-stoneland战斗背景;雪域战斗背景;空战背景;冰-冰战斗背景;以及混凝土-混凝土和战斗背景(DGTWSICB)的紫外-可见-红外(UV-Vis-IR)光谱。这一假设结合了光学与监控工程、数字成像和高光谱成像,为UV-Vis-IR-DGTWSICB迷彩纺织品技术的发展提供了理论依据。伪装工程的原理已经通过在紫外-可见-红外而不是仅在可见范围内的更宽光谱探针来接近。此外,还提出了多维CBs-DGTWSICB的伪装材料、伪装武器设计和伪装纺织品配方。介绍了紫外-可见-红外光谱中的电磁波谱、反射、电子能量、光子信号和成像机理,用于DGTWSICB目标特征的隐藏、探测、识别和识别光学工程。对伪装材料和DGTWSICB材料在紫外-可见-红外光谱上的光谱关系进行了说明和比较。伪装材料设计、方法设计和光谱设计;纺织着色剂和技术;自适应伪装;数码相机和高光谱相机成像用迷彩织物评定技术图像处理技术;并演示了一种增强UV-Vis-IR照明迷彩纺织品的分层模型。因此,预期的迷彩纺织品设计可以增强与数码相机、高光谱相机和雷达相关的现代军事防护监视的高性能创新。这一假设为多维CBs-DGTWSICB的高级迷彩纺织品设计提供了先进的指导方针。结合多维作战背景下伪装工程的挑战、局限、创新和防御应用,对防御目标特征进行隐藏、探测、识别和识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advancement in UV-Visible-IR camouflage textiles for concealment of defence surveillance against multidimensional combat backgrounds

Target detection of defence technologies is being rapidly upgraded with modern surveillance technologies. The latest techniques of surveillance are already being implemented for defence applications. Self-protection and hiding from opposing forces are the key principles for the protection of special team in defence. Camouflage textiles aim to create confusing objects for target detection of military personnel. These textiles are applied for military protection such as clothing, weapons, vehicles and location hiding nets/tents. The urgent need for camouflage textiles has been formulated with a technical solution and implementation of the right camouflage materials for concealment of defence target signature against dry leaves, green leaves and tree bark-woodland combat background; water-marine combat background; sand-desertland combat background; stone-stoneland combat background; snow-snowland combat background; sky combat background; ice-iceland combat background; and concrete-concreteland combat background (DGTWSICB) in ultraviolet–visible-infrared (UV–Vis-IR) spectrums. This hypothesis of optical and surveillance engineering, digital imaging and hyperspectral imaging has been coalesced for the advancement of UV–Vis-IR-DGTWSICB camouflage textile technology. The principle of camouflage engineering has been approached by broader spectrum probes in UV–Vis-IR rather than Vis ranges only. Furthermore, camouflage materials, camouflage weapon designs, and formulations of camouflage textiles have been proposed for multidimensional CBs-DGTWSICB. The electromagnetic spectrum, reflection, electron energy, photonic signal and imaging mechanism in UV–Vis-IR have been presented for optical engineering of concealment, detection, recognition and identification of target signature against DGTWSICB. The spectrum relationship of camouflage materials and DGTWSICB materials has been illustrated and compared in UV–Vis-IR spectrums. Camouflage material design, method design and spectral design; textile colorants and technologies; adaptive camouflage; techniques for camouflage textile assessment for digital camera and hyperspectral camera imaging; image processing techniques; and a hierarchical model have been demonstrated for augmentation of camouflage textiles in UV–Vis-IR illumination. Therefore, the anticipated design of camouflage textiles may enhance high-performance innovation for modern surveillance of military protection related to digital camera, hyperspectral camera and radar. This hypothesis includes advanced guidelines for the advanced design of camouflage textiles for multidimensional CBs-DGTWSICB. The challenges, limitations, innovation and defence applications of camouflage engineering for multidimensional combat backgrounds have been coalesced for concealment, detection, recognition and identification of defence target signature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
1
审稿时长
13 weeks
期刊最新文献
One pot of Sonogashira coupling and oxidation of alcohol reactions by magnetic nanocatalyst in an ideal environment Influence of oxalic acid and CTAB on the structural and optical properties of nanocrystalline tungsten oxide synthesized via co-precipitation method Tribological properties of epoxy matrix composites filled with particles of multicomponent titanium-based alloy Assessment of bacteria-based self-healing concrete through experimental investigations — a sustainable approach Fabrication of Au-doped mesoporous TiO2 supported on g-C3N4 as an efficient light-assisted catalyst for oxidative desulfurization of model fuels with different sulfur content
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1