通过各向异性超表面对极化相关电磁波前的操纵

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Computational Electronics Pub Date : 2024-12-05 DOI:10.1007/s10825-024-02254-6
Shaohua Ye, Yangsen Hu, Jin Li, Song Wu
{"title":"通过各向异性超表面对极化相关电磁波前的操纵","authors":"Shaohua Ye,&nbsp;Yangsen Hu,&nbsp;Jin Li,&nbsp;Song Wu","doi":"10.1007/s10825-024-02254-6","DOIUrl":null,"url":null,"abstract":"<div><p>Metasurfaces have garnered significant attention in recent years for their ability to manipulate electromagnetic (EM) wave propagation, owing to their high design flexibility, low profiles, and ease of fabrication. This study proposes the use of polarization-dependent anisotropic metasurfaces to manipulate the phase of orthogonal linearly polarized EM waves, enabling polarization multiplexing with distinct functionalities based on incident polarizations. Additionally, the proposed metasurfaces enable the generation of single pencil beams, multiple pencil beams, circularly and elliptically shaped radiation beams, offering versatile polarization manipulation capabilities. The radiation theory of planar array antennas was employed to predict the far-field patterns of the metasurfaces, demonstrating satisfactory agreement with simulated results and affirming the feasibility of the proposed method. The ability of focusing the incoming EM wave into a focal point or multi focal points and generating vortex beam carrying orbital angular momentum (OAM) under the incidence of orthogonal linearly polarized waves are also demonstrated by the proposed anisotropic metasurfaces. This proposed metasurfaces pave the way for the development of multifunctional metadevices capable of advanced EM regulation through polarization and phase modulations in free space, with potential applications in wireless communication, imaging, and radar systems.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manipulation of polarization-dependent electromagnetic wavefront via anisotropic metasurfaces\",\"authors\":\"Shaohua Ye,&nbsp;Yangsen Hu,&nbsp;Jin Li,&nbsp;Song Wu\",\"doi\":\"10.1007/s10825-024-02254-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metasurfaces have garnered significant attention in recent years for their ability to manipulate electromagnetic (EM) wave propagation, owing to their high design flexibility, low profiles, and ease of fabrication. This study proposes the use of polarization-dependent anisotropic metasurfaces to manipulate the phase of orthogonal linearly polarized EM waves, enabling polarization multiplexing with distinct functionalities based on incident polarizations. Additionally, the proposed metasurfaces enable the generation of single pencil beams, multiple pencil beams, circularly and elliptically shaped radiation beams, offering versatile polarization manipulation capabilities. The radiation theory of planar array antennas was employed to predict the far-field patterns of the metasurfaces, demonstrating satisfactory agreement with simulated results and affirming the feasibility of the proposed method. The ability of focusing the incoming EM wave into a focal point or multi focal points and generating vortex beam carrying orbital angular momentum (OAM) under the incidence of orthogonal linearly polarized waves are also demonstrated by the proposed anisotropic metasurfaces. This proposed metasurfaces pave the way for the development of multifunctional metadevices capable of advanced EM regulation through polarization and phase modulations in free space, with potential applications in wireless communication, imaging, and radar systems.</p></div>\",\"PeriodicalId\":620,\"journal\":{\"name\":\"Journal of Computational Electronics\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10825-024-02254-6\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02254-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

近年来,由于其高设计灵活性、低轮廓和易于制造,超表面因其操纵电磁波传播的能力而引起了极大的关注。本研究提出使用偏振相关的各向异性超表面来操纵正交线性极化电磁波的相位,从而实现基于入射偏振的具有不同功能的极化复用。此外,所提出的超表面能够产生单笔束、多笔束、圆形和椭圆形辐射束,提供多种偏振操纵能力。利用平面阵列天线的辐射理论对超表面的远场方向图进行了预测,结果与仿真结果吻合较好,验证了所提方法的可行性。所提出的各向异性超表面还证明了在正交线极化波入射下,将入射电磁波聚焦到一个或多个焦点并产生携带轨道角动量(OAM)的涡旋光束的能力。该提议的超表面为开发多功能元器件铺平了道路,这些器件能够通过自由空间中的极化和相位调制来进行先进的EM调节,在无线通信、成像和雷达系统中具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Manipulation of polarization-dependent electromagnetic wavefront via anisotropic metasurfaces

Metasurfaces have garnered significant attention in recent years for their ability to manipulate electromagnetic (EM) wave propagation, owing to their high design flexibility, low profiles, and ease of fabrication. This study proposes the use of polarization-dependent anisotropic metasurfaces to manipulate the phase of orthogonal linearly polarized EM waves, enabling polarization multiplexing with distinct functionalities based on incident polarizations. Additionally, the proposed metasurfaces enable the generation of single pencil beams, multiple pencil beams, circularly and elliptically shaped radiation beams, offering versatile polarization manipulation capabilities. The radiation theory of planar array antennas was employed to predict the far-field patterns of the metasurfaces, demonstrating satisfactory agreement with simulated results and affirming the feasibility of the proposed method. The ability of focusing the incoming EM wave into a focal point or multi focal points and generating vortex beam carrying orbital angular momentum (OAM) under the incidence of orthogonal linearly polarized waves are also demonstrated by the proposed anisotropic metasurfaces. This proposed metasurfaces pave the way for the development of multifunctional metadevices capable of advanced EM regulation through polarization and phase modulations in free space, with potential applications in wireless communication, imaging, and radar systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Electronics
Journal of Computational Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-PHYSICS, APPLIED
CiteScore
4.50
自引率
4.80%
发文量
142
审稿时长
>12 weeks
期刊介绍: he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered. In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.
期刊最新文献
Characteristics of a V-shaped rectenna for 28.3 THz energy harvesting Iterative methods for solving g-functions: a review, comparative evaluation, and application in the solar cell domain Modeling of effective mobility in 3D NAND flash memory with polycrystalline silicon channel Influence of non-metal doping and biaxial strain on the photovoltaic characteristics of monolayer 1T-PtSe2 An efficient computational model for single-molecule optoelectronic devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1