新型聚乙烯醇:聚丙烯酸纳米纤维复合材料用于卡培他滨缓释:结肠靶向给药的体外和体内评价

IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES Fibers and Polymers Pub Date : 2024-11-14 DOI:10.1007/s12221-024-00770-7
Padmaja SidramGiram, Swami Shailesh, Omprakash Gadgeppa Bhusnure, Sachin Sivajirao Pandit, Selvaraja Elumalai, Ubaidulla Uthumansha, Jang Hyun Tae, Ganesh Mani
{"title":"新型聚乙烯醇:聚丙烯酸纳米纤维复合材料用于卡培他滨缓释:结肠靶向给药的体外和体内评价","authors":"Padmaja SidramGiram,&nbsp;Swami Shailesh,&nbsp;Omprakash Gadgeppa Bhusnure,&nbsp;Sachin Sivajirao Pandit,&nbsp;Selvaraja Elumalai,&nbsp;Ubaidulla Uthumansha,&nbsp;Jang Hyun Tae,&nbsp;Ganesh Mani","doi":"10.1007/s12221-024-00770-7","DOIUrl":null,"url":null,"abstract":"<div><p>Cancer is a leading cause of death in the world. Recent research studies have mainly focused on available treatments without problems. Recently, advances in nanotechnology have revolutionized the way that pharmaceuticals are given, reducing their negative effects. Electrospun nanofibers are unique among the colon-focused drug delivery technology in terms of their high biocompatibility and tunable drug-release profiles. The present study aimed to develop capecitabine (CPB)-loaded nanofibers (NFs) using a composite of polyvinyl alcohol (PVA) and polyacrylic acid (PAA) to achieve controlled release at colonic pH. A maximum drug-release rate of 91.92% was achieved with formulated nanofibers having a diameter of 591.38 nm. Results of in vitro release by NFs showed a burst release pattern at the initial stage followed by prolonged release for up to 20 h. In vitro cell cytotoxicity studies revealed high cytotoxicity of formulated NFs against HT-29 colon carcinoma. Formulated NFs also showed improved in vivo anti-cancer activity compared to free drug. Therapeutic efficacy of CPB NFs was superior compared to free drug in treating cancer in induced rats.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"25 12","pages":"4665 - 4676"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Polyvinyl Alcohol: Polyacrylic Acid Nanofiber Composite for Prolonged Release of Capecitabine: In Vitro and In Vivo Evaluations of Colon-Targeted Drug Delivery\",\"authors\":\"Padmaja SidramGiram,&nbsp;Swami Shailesh,&nbsp;Omprakash Gadgeppa Bhusnure,&nbsp;Sachin Sivajirao Pandit,&nbsp;Selvaraja Elumalai,&nbsp;Ubaidulla Uthumansha,&nbsp;Jang Hyun Tae,&nbsp;Ganesh Mani\",\"doi\":\"10.1007/s12221-024-00770-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cancer is a leading cause of death in the world. Recent research studies have mainly focused on available treatments without problems. Recently, advances in nanotechnology have revolutionized the way that pharmaceuticals are given, reducing their negative effects. Electrospun nanofibers are unique among the colon-focused drug delivery technology in terms of their high biocompatibility and tunable drug-release profiles. The present study aimed to develop capecitabine (CPB)-loaded nanofibers (NFs) using a composite of polyvinyl alcohol (PVA) and polyacrylic acid (PAA) to achieve controlled release at colonic pH. A maximum drug-release rate of 91.92% was achieved with formulated nanofibers having a diameter of 591.38 nm. Results of in vitro release by NFs showed a burst release pattern at the initial stage followed by prolonged release for up to 20 h. In vitro cell cytotoxicity studies revealed high cytotoxicity of formulated NFs against HT-29 colon carcinoma. Formulated NFs also showed improved in vivo anti-cancer activity compared to free drug. Therapeutic efficacy of CPB NFs was superior compared to free drug in treating cancer in induced rats.</p></div>\",\"PeriodicalId\":557,\"journal\":{\"name\":\"Fibers and Polymers\",\"volume\":\"25 12\",\"pages\":\"4665 - 4676\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fibers and Polymers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12221-024-00770-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-024-00770-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

摘要

癌症是世界上导致死亡的主要原因。最近的研究主要集中在没有问题的现有治疗方法上。最近,纳米技术的进步已经彻底改变了给药的方式,减少了它们的负面影响。电纺丝纳米纤维在结肠聚焦给药技术中具有很高的生物相容性和可调节的药物释放特性。本研究以聚乙烯醇(PVA)和聚丙烯酸(PAA)复合材料制备卡培他滨(CPB)负载纳米纤维(NFs),使其在结肠ph下实现控释。制备的纳米纤维直径为591.38 nm,最大释药率为91.92%。体外释放结果显示,NFs在初始阶段呈爆发性释放模式,随后释放时间延长至20小时。体外细胞毒性研究显示,配方NFs对HT-29结肠癌具有高细胞毒性。与游离药物相比,配方NFs也显示出更高的体内抗癌活性。CPB nf对肿瘤诱导大鼠的治疗效果优于游离药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel Polyvinyl Alcohol: Polyacrylic Acid Nanofiber Composite for Prolonged Release of Capecitabine: In Vitro and In Vivo Evaluations of Colon-Targeted Drug Delivery

Cancer is a leading cause of death in the world. Recent research studies have mainly focused on available treatments without problems. Recently, advances in nanotechnology have revolutionized the way that pharmaceuticals are given, reducing their negative effects. Electrospun nanofibers are unique among the colon-focused drug delivery technology in terms of their high biocompatibility and tunable drug-release profiles. The present study aimed to develop capecitabine (CPB)-loaded nanofibers (NFs) using a composite of polyvinyl alcohol (PVA) and polyacrylic acid (PAA) to achieve controlled release at colonic pH. A maximum drug-release rate of 91.92% was achieved with formulated nanofibers having a diameter of 591.38 nm. Results of in vitro release by NFs showed a burst release pattern at the initial stage followed by prolonged release for up to 20 h. In vitro cell cytotoxicity studies revealed high cytotoxicity of formulated NFs against HT-29 colon carcinoma. Formulated NFs also showed improved in vivo anti-cancer activity compared to free drug. Therapeutic efficacy of CPB NFs was superior compared to free drug in treating cancer in induced rats.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fibers and Polymers
Fibers and Polymers 工程技术-材料科学:纺织
CiteScore
3.90
自引率
8.00%
发文量
267
审稿时长
3.9 months
期刊介绍: -Chemistry of Fiber Materials, Polymer Reactions and Synthesis- Physical Properties of Fibers, Polymer Blends and Composites- Fiber Spinning and Textile Processing, Polymer Physics, Morphology- Colorants and Dyeing, Polymer Analysis and Characterization- Chemical Aftertreatment of Textiles, Polymer Processing and Rheology- Textile and Apparel Science, Functional Polymers
期刊最新文献
Enhancing Nitric Oxide Gas Detection by Tuning the Structural Dimension of Electrospun ZnO Nanofibers Fibers and Polymers Sandwich-Structured Free-Standing Films with Excellent Flame Retardant Performance and Effective Electromagnetic Interference (EMI) Shielding Capability Application of Photochromic Spiroindolinonaphthoxazines in Disperse Dyeing of Polyester: Re-evaluating Process Optimization by Analyzing Degradation Behavior and Photochromic Properties A Statistical Filament-Level Modeling of the Impact Behavior of Single and Multi-layer Woven Fabric A Novel Strategy to Control the Effective Strain Range for Yarn-Based Resistive Strain Sensor by Braiding Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1