不同层数下剪切增稠流体浸渍芳纶织物动态行为的实验研究

IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES Fibers and Polymers Pub Date : 2024-10-14 DOI:10.1007/s12221-024-00742-x
Ali İmran Ayten, Alper Kaşgöz
{"title":"不同层数下剪切增稠流体浸渍芳纶织物动态行为的实验研究","authors":"Ali İmran Ayten,&nbsp;Alper Kaşgöz","doi":"10.1007/s12221-024-00742-x","DOIUrl":null,"url":null,"abstract":"<div><p>Shear thickening fluid (STF) is a solution performs an increase in its viscosity under shear stress. This study investigates rheological behavior of STF, then its effectiveness against dynamic loadings for the case it is applied on aramid fabric. Polyethylene glycol 200 and 400 g/mol, and Aerosil 200, 300, 380 were used for preparation of STF. Rheological analysis was performed to determine thickening behavior and parameters for the solutions having 5, 10 and 20% silica concentrations by weight. The solution having optimum shear thickening performance for dynamic impact loading was selected and it was impregnated aramid fabric to prepare low velocity impact and ballistic test samples. Low velocity impact experiments were executed for different number of layers from 1 to 8 at different energy levels to obtain absorbed energy and maximum contact force values. A curve fitting equation was derived for absorbed energy and number of layers of aramid fabric. Finally, Level IIA ballistic test was done to test whether the curve fitting equation is effectively working or not. Additionally, STF impregnated aramid fabric with its neat counterpart against ballistic impact was compared. A detailed ballistic test characterization was performed including the last shape of ammo. It is determined that impregnation of STF has important effects on ballistic behavior of aramid fabric.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"25 12","pages":"4831 - 4844"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Experimental Investigation on Dynamic Behaviors of Shear Thickening Fluid Impregnated Aramid Fabrics for Different Number of Layers\",\"authors\":\"Ali İmran Ayten,&nbsp;Alper Kaşgöz\",\"doi\":\"10.1007/s12221-024-00742-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Shear thickening fluid (STF) is a solution performs an increase in its viscosity under shear stress. This study investigates rheological behavior of STF, then its effectiveness against dynamic loadings for the case it is applied on aramid fabric. Polyethylene glycol 200 and 400 g/mol, and Aerosil 200, 300, 380 were used for preparation of STF. Rheological analysis was performed to determine thickening behavior and parameters for the solutions having 5, 10 and 20% silica concentrations by weight. The solution having optimum shear thickening performance for dynamic impact loading was selected and it was impregnated aramid fabric to prepare low velocity impact and ballistic test samples. Low velocity impact experiments were executed for different number of layers from 1 to 8 at different energy levels to obtain absorbed energy and maximum contact force values. A curve fitting equation was derived for absorbed energy and number of layers of aramid fabric. Finally, Level IIA ballistic test was done to test whether the curve fitting equation is effectively working or not. Additionally, STF impregnated aramid fabric with its neat counterpart against ballistic impact was compared. A detailed ballistic test characterization was performed including the last shape of ammo. It is determined that impregnation of STF has important effects on ballistic behavior of aramid fabric.</p></div>\",\"PeriodicalId\":557,\"journal\":{\"name\":\"Fibers and Polymers\",\"volume\":\"25 12\",\"pages\":\"4831 - 4844\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fibers and Polymers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12221-024-00742-x\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-024-00742-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

摘要

剪切增稠液(STF)是一种在剪切应力作用下粘度增加的溶液。本研究研究了STF的流变行为,然后研究了它在芳纶织物上对动态载荷的有效性。用聚乙二醇200、400 g/mol, Aerosil 200、300、380制备STF。通过流变学分析,确定了以重量计二氧化硅浓度为5%、10%和20%的溶液的增稠行为和参数。选择了动态冲击载荷下剪切增厚性能最佳的溶液,并将其浸渍在芳纶织物上,制备低速冲击和弹道试验样品。进行了1 ~ 8层不同层数、不同能级的低速冲击实验,得到了吸收能和最大接触力值。导出了芳纶织物吸收能与层数的曲线拟合方程。最后进行IIA级弹道试验,检验曲线拟合方程是否有效。此外,还比较了STF浸渍芳纶织物与纯芳纶织物的抗弹道冲击性能。进行了详细的弹道试验表征,包括弹药的最后形状。确定了STF浸渍对芳纶织物的弹道性能有重要影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Experimental Investigation on Dynamic Behaviors of Shear Thickening Fluid Impregnated Aramid Fabrics for Different Number of Layers

Shear thickening fluid (STF) is a solution performs an increase in its viscosity under shear stress. This study investigates rheological behavior of STF, then its effectiveness against dynamic loadings for the case it is applied on aramid fabric. Polyethylene glycol 200 and 400 g/mol, and Aerosil 200, 300, 380 were used for preparation of STF. Rheological analysis was performed to determine thickening behavior and parameters for the solutions having 5, 10 and 20% silica concentrations by weight. The solution having optimum shear thickening performance for dynamic impact loading was selected and it was impregnated aramid fabric to prepare low velocity impact and ballistic test samples. Low velocity impact experiments were executed for different number of layers from 1 to 8 at different energy levels to obtain absorbed energy and maximum contact force values. A curve fitting equation was derived for absorbed energy and number of layers of aramid fabric. Finally, Level IIA ballistic test was done to test whether the curve fitting equation is effectively working or not. Additionally, STF impregnated aramid fabric with its neat counterpart against ballistic impact was compared. A detailed ballistic test characterization was performed including the last shape of ammo. It is determined that impregnation of STF has important effects on ballistic behavior of aramid fabric.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fibers and Polymers
Fibers and Polymers 工程技术-材料科学:纺织
CiteScore
3.90
自引率
8.00%
发文量
267
审稿时长
3.9 months
期刊介绍: -Chemistry of Fiber Materials, Polymer Reactions and Synthesis- Physical Properties of Fibers, Polymer Blends and Composites- Fiber Spinning and Textile Processing, Polymer Physics, Morphology- Colorants and Dyeing, Polymer Analysis and Characterization- Chemical Aftertreatment of Textiles, Polymer Processing and Rheology- Textile and Apparel Science, Functional Polymers
期刊最新文献
Enhancing Nitric Oxide Gas Detection by Tuning the Structural Dimension of Electrospun ZnO Nanofibers Fibers and Polymers Sandwich-Structured Free-Standing Films with Excellent Flame Retardant Performance and Effective Electromagnetic Interference (EMI) Shielding Capability Application of Photochromic Spiroindolinonaphthoxazines in Disperse Dyeing of Polyester: Re-evaluating Process Optimization by Analyzing Degradation Behavior and Photochromic Properties A Statistical Filament-Level Modeling of the Impact Behavior of Single and Multi-layer Woven Fabric A Novel Strategy to Control the Effective Strain Range for Yarn-Based Resistive Strain Sensor by Braiding Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1