{"title":"机器学习方法和影响2型糖尿病发展的遗传决定因素:巴西患者的遗传关联研究","authors":"K F Santos, L P Assunção, R S Santos, A A S Reis","doi":"10.1590/1414-431X2024e13957","DOIUrl":null,"url":null,"abstract":"<p><p>This genetic association study including 120 patients with type 2 diabetes mellitus (T2DM) and 166 non-diabetic individuals aimed to investigate the association of polymorphisms in the genes GSTM1 and GSTT1 (gene deletion), GSTP1 (rs1695), ACE (rs4646994), ACE2 (rs2285666), VEGF-A (rs28357093), and MTHFR (rs1801133) with the development of T2DM in the population of Goiás, Brazil. Additionally, the combined effects of these polymorphisms and the possible differences between sexes in susceptibility to the disease were evaluated. Finally, machine learning models were integrated to select the main risk characteristics for the T2DM diagnosis. Risk associations were found for the GSTT1-null genotype in the non-stratified sample and females, and for mutant C allele of the VEGF-A rs28357093 polymorphism in the non-stratified sample. Furthermore, an association of heterozygous (AG) and mutant (GG) GSTP1 genotypes was observed when combined with GSTT1-null. Machine learning approaches corroborated the results found. Therefore, these results suggested that GSTT1 and GSTP1 polymorphisms may contribute to T2DM susceptibility in a Brazilian sample.</p>","PeriodicalId":9088,"journal":{"name":"Brazilian Journal of Medical and Biological Research","volume":"57 ","pages":"e13957"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653484/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine learning approaches and genetic determinants that influence the development of type 2 diabetes mellitus: a genetic association study in Brazilian patients.\",\"authors\":\"K F Santos, L P Assunção, R S Santos, A A S Reis\",\"doi\":\"10.1590/1414-431X2024e13957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This genetic association study including 120 patients with type 2 diabetes mellitus (T2DM) and 166 non-diabetic individuals aimed to investigate the association of polymorphisms in the genes GSTM1 and GSTT1 (gene deletion), GSTP1 (rs1695), ACE (rs4646994), ACE2 (rs2285666), VEGF-A (rs28357093), and MTHFR (rs1801133) with the development of T2DM in the population of Goiás, Brazil. Additionally, the combined effects of these polymorphisms and the possible differences between sexes in susceptibility to the disease were evaluated. Finally, machine learning models were integrated to select the main risk characteristics for the T2DM diagnosis. Risk associations were found for the GSTT1-null genotype in the non-stratified sample and females, and for mutant C allele of the VEGF-A rs28357093 polymorphism in the non-stratified sample. Furthermore, an association of heterozygous (AG) and mutant (GG) GSTP1 genotypes was observed when combined with GSTT1-null. Machine learning approaches corroborated the results found. Therefore, these results suggested that GSTT1 and GSTP1 polymorphisms may contribute to T2DM susceptibility in a Brazilian sample.</p>\",\"PeriodicalId\":9088,\"journal\":{\"name\":\"Brazilian Journal of Medical and Biological Research\",\"volume\":\"57 \",\"pages\":\"e13957\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653484/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Journal of Medical and Biological Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1590/1414-431X2024e13957\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Medical and Biological Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1590/1414-431X2024e13957","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Machine learning approaches and genetic determinants that influence the development of type 2 diabetes mellitus: a genetic association study in Brazilian patients.
This genetic association study including 120 patients with type 2 diabetes mellitus (T2DM) and 166 non-diabetic individuals aimed to investigate the association of polymorphisms in the genes GSTM1 and GSTT1 (gene deletion), GSTP1 (rs1695), ACE (rs4646994), ACE2 (rs2285666), VEGF-A (rs28357093), and MTHFR (rs1801133) with the development of T2DM in the population of Goiás, Brazil. Additionally, the combined effects of these polymorphisms and the possible differences between sexes in susceptibility to the disease were evaluated. Finally, machine learning models were integrated to select the main risk characteristics for the T2DM diagnosis. Risk associations were found for the GSTT1-null genotype in the non-stratified sample and females, and for mutant C allele of the VEGF-A rs28357093 polymorphism in the non-stratified sample. Furthermore, an association of heterozygous (AG) and mutant (GG) GSTP1 genotypes was observed when combined with GSTT1-null. Machine learning approaches corroborated the results found. Therefore, these results suggested that GSTT1 and GSTP1 polymorphisms may contribute to T2DM susceptibility in a Brazilian sample.
期刊介绍:
The Brazilian Journal of Medical and Biological Research, founded by Michel Jamra, is edited and published monthly by the Associação Brasileira de Divulgação Científica (ABDC), a federation of Brazilian scientific societies:
- Sociedade Brasileira de Biofísica (SBBf)
- Sociedade Brasileira de Farmacologia e Terapêutica Experimental (SBFTE)
- Sociedade Brasileira de Fisiologia (SBFis)
- Sociedade Brasileira de Imunologia (SBI)
- Sociedade Brasileira de Investigação Clínica (SBIC)
- Sociedade Brasileira de Neurociências e Comportamento (SBNeC).