Amy B Banta , Rodrigo A Cuellar , Nischala Nadig , Bryce C Davis , Jason M Peters
{"title":"crispr相关转座子在细菌功能基因组学中的应用前景。","authors":"Amy B Banta , Rodrigo A Cuellar , Nischala Nadig , Bryce C Davis , Jason M Peters","doi":"10.1016/j.mib.2024.102563","DOIUrl":null,"url":null,"abstract":"<div><div>CRISPR-associated transposons (CASTs) are naturally occurring amalgamations of CRISPR-Cas machinery and Tn<em>7</em>-like transposons that direct site-specific integration of transposon DNA via programmable guide RNAs. Although the mechanisms of CAST-based transposition have been well studied at the molecular and structural level, CASTs have yet to be broadly applied to bacterial genome engineering and systematic gene phenotyping (i.e. functional genomics) — likely due to their relatively recent discovery. Here, we describe the function and applications of CASTs, focusing on well-characterized systems, including the type I-F CAST from <em>Vibrio cholerae</em> (VcCAST) and type V-K CAST from <em>Scytonema hofmanni</em> (ShCAST). Further, we discuss the potentially transformative impact of targeted transposition on bacterial functional genomics by proposing genome-scale extensions of existing CAST tools.</div></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"83 ","pages":"Article 102563"},"PeriodicalIF":5.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The promise of CRISPR-associated transposons for bacterial functional genomics\",\"authors\":\"Amy B Banta , Rodrigo A Cuellar , Nischala Nadig , Bryce C Davis , Jason M Peters\",\"doi\":\"10.1016/j.mib.2024.102563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>CRISPR-associated transposons (CASTs) are naturally occurring amalgamations of CRISPR-Cas machinery and Tn<em>7</em>-like transposons that direct site-specific integration of transposon DNA via programmable guide RNAs. Although the mechanisms of CAST-based transposition have been well studied at the molecular and structural level, CASTs have yet to be broadly applied to bacterial genome engineering and systematic gene phenotyping (i.e. functional genomics) — likely due to their relatively recent discovery. Here, we describe the function and applications of CASTs, focusing on well-characterized systems, including the type I-F CAST from <em>Vibrio cholerae</em> (VcCAST) and type V-K CAST from <em>Scytonema hofmanni</em> (ShCAST). Further, we discuss the potentially transformative impact of targeted transposition on bacterial functional genomics by proposing genome-scale extensions of existing CAST tools.</div></div>\",\"PeriodicalId\":10921,\"journal\":{\"name\":\"Current opinion in microbiology\",\"volume\":\"83 \",\"pages\":\"Article 102563\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369527424001395\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369527424001395","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
The promise of CRISPR-associated transposons for bacterial functional genomics
CRISPR-associated transposons (CASTs) are naturally occurring amalgamations of CRISPR-Cas machinery and Tn7-like transposons that direct site-specific integration of transposon DNA via programmable guide RNAs. Although the mechanisms of CAST-based transposition have been well studied at the molecular and structural level, CASTs have yet to be broadly applied to bacterial genome engineering and systematic gene phenotyping (i.e. functional genomics) — likely due to their relatively recent discovery. Here, we describe the function and applications of CASTs, focusing on well-characterized systems, including the type I-F CAST from Vibrio cholerae (VcCAST) and type V-K CAST from Scytonema hofmanni (ShCAST). Further, we discuss the potentially transformative impact of targeted transposition on bacterial functional genomics by proposing genome-scale extensions of existing CAST tools.
期刊介绍:
Current Opinion in Microbiology is a systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of microbiology. It consists of 6 issues per year covering the following 11 sections, each of which is reviewed once a year:
Host-microbe interactions: bacteria
Cell regulation
Environmental microbiology
Host-microbe interactions: fungi/parasites/viruses
Antimicrobials
Microbial systems biology
Growth and development: eukaryotes/prokaryotes