更新麦克雷的光合有效辐射曲线- 55年后。

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of photochemistry and photobiology. B, Biology Pub Date : 2025-01-01 DOI:10.1016/j.jphotobiol.2024.113069
Bo-Sen Wu, Philip Wiredu Addo, Sarah MacPherson, Valérie Orsat, Mark Lefsrud
{"title":"更新麦克雷的光合有效辐射曲线- 55年后。","authors":"Bo-Sen Wu,&nbsp;Philip Wiredu Addo,&nbsp;Sarah MacPherson,&nbsp;Valérie Orsat,&nbsp;Mark Lefsrud","doi":"10.1016/j.jphotobiol.2024.113069","DOIUrl":null,"url":null,"abstract":"<div><div>Our interpretation of photosynthetically active radiation in plants has evolved since the 1970s with new data explaining the underlying mechanisms. To update McCree's founding work, this study explored the spectral response of photosynthesis in young tomato (<em>Solanum lycopersicum</em> cv. Beefsteak) and lettuce (<em>Lactuca sativa</em> cv. Breen) plants using a narrow-spectrum light unit and a portable photosynthesis system equipped with a whole plant chamber. Highly resolved spectral photosynthesis curves using 1-nm increments at 10 nm full width at half maximum (FWHM) were generated. Results show that the lowest quantum yields were observed at 450 nm and 660 nm, two wavelengths commonly used to improve photosynthesis in research. Different trends and amplified peaks were observed among the spectral quantum yield curves of tomato and lettuce plants and those of earlier studies with red and blue light. An opposing phenomenon was observed, where blue light is more efficient than red light. This is based on the narrower wavelength data acquired in both experimental plant species. Findings represent the most detailed and highly resolved spectral photosynthesis and quantum yield curves to date using experimental model plants (tomato and lettuce).</div></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"262 ","pages":"Article 113069"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Updates to McCree's photosynthetically active radiation curve — 55 years later\",\"authors\":\"Bo-Sen Wu,&nbsp;Philip Wiredu Addo,&nbsp;Sarah MacPherson,&nbsp;Valérie Orsat,&nbsp;Mark Lefsrud\",\"doi\":\"10.1016/j.jphotobiol.2024.113069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Our interpretation of photosynthetically active radiation in plants has evolved since the 1970s with new data explaining the underlying mechanisms. To update McCree's founding work, this study explored the spectral response of photosynthesis in young tomato (<em>Solanum lycopersicum</em> cv. Beefsteak) and lettuce (<em>Lactuca sativa</em> cv. Breen) plants using a narrow-spectrum light unit and a portable photosynthesis system equipped with a whole plant chamber. Highly resolved spectral photosynthesis curves using 1-nm increments at 10 nm full width at half maximum (FWHM) were generated. Results show that the lowest quantum yields were observed at 450 nm and 660 nm, two wavelengths commonly used to improve photosynthesis in research. Different trends and amplified peaks were observed among the spectral quantum yield curves of tomato and lettuce plants and those of earlier studies with red and blue light. An opposing phenomenon was observed, where blue light is more efficient than red light. This is based on the narrower wavelength data acquired in both experimental plant species. Findings represent the most detailed and highly resolved spectral photosynthesis and quantum yield curves to date using experimental model plants (tomato and lettuce).</div></div>\",\"PeriodicalId\":16772,\"journal\":{\"name\":\"Journal of photochemistry and photobiology. B, Biology\",\"volume\":\"262 \",\"pages\":\"Article 113069\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of photochemistry and photobiology. B, Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S101113442400229X\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of photochemistry and photobiology. B, Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S101113442400229X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

自20世纪70年代以来,我们对植物光合有效辐射的解释不断发展,新的数据解释了潜在的机制。为了更新McCree的创始工作,本研究探索了番茄幼苗光合作用的光谱响应。牛排)和生菜(Lactuca sativa cv。布林)植物使用窄光谱光单元和便携式光合作用系统配备了一个完整的植物室。生成了高分辨率的光谱光合作用曲线,以1 nm增量,10 nm全宽半最大(FWHM)。结果表明,在450nm和660nm这两个研究中常用的提高光合作用的波长处,量子产率最低。番茄和生菜的光谱量子产率曲线与早期研究的红蓝光光谱量子产率曲线有不同的变化趋势和放大峰。相反的现象被观察到,蓝光比红光更有效。这是基于在两种实验植物中获得的较窄波长数据。研究结果代表了迄今为止使用实验模式植物(番茄和生菜)的最详细和高度分辨率的光谱光合作用和量子产量曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Updates to McCree's photosynthetically active radiation curve — 55 years later
Our interpretation of photosynthetically active radiation in plants has evolved since the 1970s with new data explaining the underlying mechanisms. To update McCree's founding work, this study explored the spectral response of photosynthesis in young tomato (Solanum lycopersicum cv. Beefsteak) and lettuce (Lactuca sativa cv. Breen) plants using a narrow-spectrum light unit and a portable photosynthesis system equipped with a whole plant chamber. Highly resolved spectral photosynthesis curves using 1-nm increments at 10 nm full width at half maximum (FWHM) were generated. Results show that the lowest quantum yields were observed at 450 nm and 660 nm, two wavelengths commonly used to improve photosynthesis in research. Different trends and amplified peaks were observed among the spectral quantum yield curves of tomato and lettuce plants and those of earlier studies with red and blue light. An opposing phenomenon was observed, where blue light is more efficient than red light. This is based on the narrower wavelength data acquired in both experimental plant species. Findings represent the most detailed and highly resolved spectral photosynthesis and quantum yield curves to date using experimental model plants (tomato and lettuce).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.10
自引率
1.90%
发文量
161
审稿时长
37 days
期刊介绍: The Journal of Photochemistry and Photobiology B: Biology provides a forum for the publication of papers relating to the various aspects of photobiology, as well as a means for communication in this multidisciplinary field. The scope includes: - Bioluminescence - Chronobiology - DNA repair - Environmental photobiology - Nanotechnology in photobiology - Photocarcinogenesis - Photochemistry of biomolecules - Photodynamic therapy - Photomedicine - Photomorphogenesis - Photomovement - Photoreception - Photosensitization - Photosynthesis - Phototechnology - Spectroscopy of biological systems - UV and visible radiation effects and vision.
期刊最新文献
Vicenin-2 reduces inflammation and apoptosis to relieve skin photoaging via suppressing GSK3β Microstructural regulation of Ir(III) complexes for enhanced photocytotoxicity in photodynamic cancer therapy Editorial Board Comparative investigation of structural properties and biological applications of chemical and biogenic synthesis of zirconium dioxide (ZrO2) nanoparticles using Passiflora edulis Photodynamic antimicrobial therapy with Erythrosin B, Eosin Y, and Rose Bengal for the inhibition of fungal keratitis isolates: An in vitro study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1