通过神经网络介导的特征提取增强四肢瘫痪参与者脑机接口的控制

IF 26.8 1区 医学 Q1 ENGINEERING, BIOMEDICAL Nature Biomedical Engineering Pub Date : 2024-12-06 DOI:10.1038/s41551-024-01297-1
Benyamin Haghi, Tyson Aflalo, Spencer Kellis, Charles Guan, Jorge A. Gamez de Leon, Albert Yan Huang, Nader Pouratian, Richard A. Andersen, Azita Emami
{"title":"通过神经网络介导的特征提取增强四肢瘫痪参与者脑机接口的控制","authors":"Benyamin Haghi, Tyson Aflalo, Spencer Kellis, Charles Guan, Jorge A. Gamez de Leon, Albert Yan Huang, Nader Pouratian, Richard A. Andersen, Azita Emami","doi":"10.1038/s41551-024-01297-1","DOIUrl":null,"url":null,"abstract":"<p>To infer intent, brain–computer interfaces must extract features that accurately estimate neural activity. However, the degradation of signal quality over time hinders the use of feature-engineering techniques to recover functional information. By using neural data recorded from electrode arrays implanted in the cortices of three human participants, here we show that a convolutional neural network can be used to map electrical signals to neural features by jointly optimizing feature extraction and decoding under the constraint that all the electrodes must use the same neural-network parameters. In all three participants, the neural network led to offline and online performance improvements in a cursor-control task across all metrics, outperforming the rate of threshold crossings and wavelet decomposition of the broadband neural data (among other feature-extraction techniques). We also show that the trained neural network can be used without modification for new datasets, brain areas and participants.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"13 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced control of a brain–computer interface by tetraplegic participants via neural-network-mediated feature extraction\",\"authors\":\"Benyamin Haghi, Tyson Aflalo, Spencer Kellis, Charles Guan, Jorge A. Gamez de Leon, Albert Yan Huang, Nader Pouratian, Richard A. Andersen, Azita Emami\",\"doi\":\"10.1038/s41551-024-01297-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To infer intent, brain–computer interfaces must extract features that accurately estimate neural activity. However, the degradation of signal quality over time hinders the use of feature-engineering techniques to recover functional information. By using neural data recorded from electrode arrays implanted in the cortices of three human participants, here we show that a convolutional neural network can be used to map electrical signals to neural features by jointly optimizing feature extraction and decoding under the constraint that all the electrodes must use the same neural-network parameters. In all three participants, the neural network led to offline and online performance improvements in a cursor-control task across all metrics, outperforming the rate of threshold crossings and wavelet decomposition of the broadband neural data (among other feature-extraction techniques). We also show that the trained neural network can be used without modification for new datasets, brain areas and participants.</p>\",\"PeriodicalId\":19063,\"journal\":{\"name\":\"Nature Biomedical Engineering\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41551-024-01297-1\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-024-01297-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了推断意图,脑机接口必须提取出能够准确估计神经活动的特征。然而,随着时间的推移,信号质量的退化阻碍了特征工程技术的使用,以恢复功能信息。通过使用植入三名受试者大脑皮层的电极阵列记录的神经数据,我们证明了在所有电极必须使用相同的神经网络参数的约束下,卷积神经网络可以通过联合优化特征提取和解码来将电信号映射到神经特征。在所有三个参与者中,神经网络在所有指标的光标控制任务中导致离线和在线性能改进,优于阈值交叉率和宽带神经数据的小波分解(以及其他特征提取技术)。我们还表明,训练后的神经网络可以在不修改的情况下用于新的数据集、大脑区域和参与者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced control of a brain–computer interface by tetraplegic participants via neural-network-mediated feature extraction

To infer intent, brain–computer interfaces must extract features that accurately estimate neural activity. However, the degradation of signal quality over time hinders the use of feature-engineering techniques to recover functional information. By using neural data recorded from electrode arrays implanted in the cortices of three human participants, here we show that a convolutional neural network can be used to map electrical signals to neural features by jointly optimizing feature extraction and decoding under the constraint that all the electrodes must use the same neural-network parameters. In all three participants, the neural network led to offline and online performance improvements in a cursor-control task across all metrics, outperforming the rate of threshold crossings and wavelet decomposition of the broadband neural data (among other feature-extraction techniques). We also show that the trained neural network can be used without modification for new datasets, brain areas and participants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Biomedical Engineering
Nature Biomedical Engineering Medicine-Medicine (miscellaneous)
CiteScore
45.30
自引率
1.10%
发文量
138
期刊介绍: Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.
期刊最新文献
A generalist model for enhancing brain MRIs Author Correction: Patterned gastrointestinal monolayers with bilateral access as observable models of parasite gut infection Author Correction: Enhancing the immunogenicity of lipid-nanoparticle mRNA vaccines by adjuvanting the ionizable lipid and the mRNA Author Correction: Dynamical flexible inference of nonlinear latent factors and structures in neural population activity Therapeutic precision, potency and promise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1