循环加热或热中性条件下添加或不添加葡萄糖饲养肉型鸡肾脏水通道蛋白mRNA表达和血液成分的变化。

IF 2.9 2区 生物学 Q2 BIOLOGY Journal of thermal biology Pub Date : 2024-12-01 Epub Date: 2024-11-30 DOI:10.1016/j.jtherbio.2024.104003
Oluwatomide W Ariyo, Josephine Kwakye, Selorm Sovi, Bikash Aryal, Evan Hartono, Ahmed F A Ghareeb, Marie C Milfort, Alberta L Fuller, Romdhane Rekaya, Samuel E Aggrey
{"title":"循环加热或热中性条件下添加或不添加葡萄糖饲养肉型鸡肾脏水通道蛋白mRNA表达和血液成分的变化。","authors":"Oluwatomide W Ariyo, Josephine Kwakye, Selorm Sovi, Bikash Aryal, Evan Hartono, Ahmed F A Ghareeb, Marie C Milfort, Alberta L Fuller, Romdhane Rekaya, Samuel E Aggrey","doi":"10.1016/j.jtherbio.2024.104003","DOIUrl":null,"url":null,"abstract":"<p><p>Heat stress (HS) disrupts water homeostasis in broiler chickens. Kidney aquaporins (AQPs) facilitate water permeability in the renal tubules, thereby maintaining homeostasis of body water and metabolites. We evaluated the mRNA expression of kidney AQPs 1, 2, 3 and 4, and the blood composition of broilers raised under thermoneutral (TN) or cyclic HS condition with or without glucose supplementation. The treatments were TN+0% glucose (TN0), TN+6% glucose (TN6), HS+0% glucose (HS0), and HS+6% glucose (HS6). Each treatment had 6 replicates of 19 birds each. Groups with glucose (Glu) supplementation continuously received 6% Glu in water, and HS groups were exposed to a cyclic HS regime involving 35 °C from 8am to 8pm, and subsequently retuned to 25 °C (thermoneutral) from 8pm to 8am. Both heat and glucose supplementation were applied from d28 to d35. Blood and kidney were collected from 1 bird/replicate on d35. AQP-1, -2, and -3 were highly expressed (p < 0.05) in HS0 relative to TN0, TN6, and HS6. Birds in the TN6 and HS6 had a lower expression of AQP2 while HS0 and HS6 had a lower expression of AQP4. Birds in the HS0 group had a higher water consumption relative to TN0, TN6 and HS6. HS0 and HS6 had a higher water conversion ratio relative to TN0 and TN6. Heat stress lowered (p < 0.05) blood PCO<sub>2</sub>, TCO<sub>2,</sub> and HCO<sub>3</sub>. The blood pH, Na, K, and Cl composition were not affected (p > 0.05) with heat or glucose supplementation. Cyclic HS (p < 0.0001) and glucose supplementation (p = 0.0090) raised the blood glucose level. Kidney aquaporins 1, 2, and 3 are important indicators of water utilization in HS broiler chickens.</p>","PeriodicalId":17428,"journal":{"name":"Journal of thermal biology","volume":"126 ","pages":"104003"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"mRNA expression of kidney aquaporins and blood composition of meat-type chickens raised with or without glucose supplementation under cyclic heat or thermoneutral condition.\",\"authors\":\"Oluwatomide W Ariyo, Josephine Kwakye, Selorm Sovi, Bikash Aryal, Evan Hartono, Ahmed F A Ghareeb, Marie C Milfort, Alberta L Fuller, Romdhane Rekaya, Samuel E Aggrey\",\"doi\":\"10.1016/j.jtherbio.2024.104003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heat stress (HS) disrupts water homeostasis in broiler chickens. Kidney aquaporins (AQPs) facilitate water permeability in the renal tubules, thereby maintaining homeostasis of body water and metabolites. We evaluated the mRNA expression of kidney AQPs 1, 2, 3 and 4, and the blood composition of broilers raised under thermoneutral (TN) or cyclic HS condition with or without glucose supplementation. The treatments were TN+0% glucose (TN0), TN+6% glucose (TN6), HS+0% glucose (HS0), and HS+6% glucose (HS6). Each treatment had 6 replicates of 19 birds each. Groups with glucose (Glu) supplementation continuously received 6% Glu in water, and HS groups were exposed to a cyclic HS regime involving 35 °C from 8am to 8pm, and subsequently retuned to 25 °C (thermoneutral) from 8pm to 8am. Both heat and glucose supplementation were applied from d28 to d35. Blood and kidney were collected from 1 bird/replicate on d35. AQP-1, -2, and -3 were highly expressed (p < 0.05) in HS0 relative to TN0, TN6, and HS6. Birds in the TN6 and HS6 had a lower expression of AQP2 while HS0 and HS6 had a lower expression of AQP4. Birds in the HS0 group had a higher water consumption relative to TN0, TN6 and HS6. HS0 and HS6 had a higher water conversion ratio relative to TN0 and TN6. Heat stress lowered (p < 0.05) blood PCO<sub>2</sub>, TCO<sub>2,</sub> and HCO<sub>3</sub>. The blood pH, Na, K, and Cl composition were not affected (p > 0.05) with heat or glucose supplementation. Cyclic HS (p < 0.0001) and glucose supplementation (p = 0.0090) raised the blood glucose level. Kidney aquaporins 1, 2, and 3 are important indicators of water utilization in HS broiler chickens.</p>\",\"PeriodicalId\":17428,\"journal\":{\"name\":\"Journal of thermal biology\",\"volume\":\"126 \",\"pages\":\"104003\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of thermal biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jtherbio.2024.104003\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of thermal biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jtherbio.2024.104003","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

热应激(HS)会破坏肉鸡体内的水分平衡。肾水通道蛋白(AQPs)促进水在肾小管中的渗透,从而维持体内水和代谢物的稳态。研究了在热中性(TN)和循环HS条件下饲养的肉仔鸡,在添加或不添加葡萄糖的情况下,肾脏AQPs 1、2、3和4的mRNA表达和血液成分的变化。分别为TN+0%葡萄糖(TN0)、TN+6%葡萄糖(TN6)、HS+0%葡萄糖(HS0)、HS+6%葡萄糖(HS6)。每个处理6个重复,每个重复19只鸡。葡萄糖(Glu)补充组持续接受6%的水中Glu, HS组从早上8点到晚上8点暴露于35°C的循环HS状态,随后从晚上8点到早上8点恢复到25°C(热中性)。从第28天至第35天同时补充热量和葡萄糖。第35天,每个重复取1只鸟的血和肾。AQP-1、-2、-3高表达(p 2、TCO2、HCO3)。添加热量或葡萄糖对血液pH、Na、K和Cl组成没有影响(p > 0.05)。循环HS (p)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
mRNA expression of kidney aquaporins and blood composition of meat-type chickens raised with or without glucose supplementation under cyclic heat or thermoneutral condition.

Heat stress (HS) disrupts water homeostasis in broiler chickens. Kidney aquaporins (AQPs) facilitate water permeability in the renal tubules, thereby maintaining homeostasis of body water and metabolites. We evaluated the mRNA expression of kidney AQPs 1, 2, 3 and 4, and the blood composition of broilers raised under thermoneutral (TN) or cyclic HS condition with or without glucose supplementation. The treatments were TN+0% glucose (TN0), TN+6% glucose (TN6), HS+0% glucose (HS0), and HS+6% glucose (HS6). Each treatment had 6 replicates of 19 birds each. Groups with glucose (Glu) supplementation continuously received 6% Glu in water, and HS groups were exposed to a cyclic HS regime involving 35 °C from 8am to 8pm, and subsequently retuned to 25 °C (thermoneutral) from 8pm to 8am. Both heat and glucose supplementation were applied from d28 to d35. Blood and kidney were collected from 1 bird/replicate on d35. AQP-1, -2, and -3 were highly expressed (p < 0.05) in HS0 relative to TN0, TN6, and HS6. Birds in the TN6 and HS6 had a lower expression of AQP2 while HS0 and HS6 had a lower expression of AQP4. Birds in the HS0 group had a higher water consumption relative to TN0, TN6 and HS6. HS0 and HS6 had a higher water conversion ratio relative to TN0 and TN6. Heat stress lowered (p < 0.05) blood PCO2, TCO2, and HCO3. The blood pH, Na, K, and Cl composition were not affected (p > 0.05) with heat or glucose supplementation. Cyclic HS (p < 0.0001) and glucose supplementation (p = 0.0090) raised the blood glucose level. Kidney aquaporins 1, 2, and 3 are important indicators of water utilization in HS broiler chickens.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of thermal biology
Journal of thermal biology 生物-动物学
CiteScore
5.30
自引率
7.40%
发文量
196
审稿时长
14.5 weeks
期刊介绍: The Journal of Thermal Biology publishes articles that advance our knowledge on the ways and mechanisms through which temperature affects man and animals. This includes studies of their responses to these effects and on the ecological consequences. Directly relevant to this theme are: • The mechanisms of thermal limitation, heat and cold injury, and the resistance of organisms to extremes of temperature • The mechanisms involved in acclimation, acclimatization and evolutionary adaptation to temperature • Mechanisms underlying the patterns of hibernation, torpor, dormancy, aestivation and diapause • Effects of temperature on reproduction and development, growth, ageing and life-span • Studies on modelling heat transfer between organisms and their environment • The contributions of temperature to effects of climate change on animal species and man • Studies of conservation biology and physiology related to temperature • Behavioural and physiological regulation of body temperature including its pathophysiology and fever • Medical applications of hypo- and hyperthermia Article types: • Original articles • Review articles
期刊最新文献
Single and combined effects of environmental heat stress and physical exercise on thermoregulation, executive function, and cerebral oxygenation. Supercooling tolerance in the Mexican lizard Barisia imbricata (Squamata: Anguidae). Critical reproductive behaviors in Scaled Quail and Northern Bobwhite are affected by thermal variability and mean temperature. Acclimation, thermal tolerance and aerobic metabolism of narrow-clawed crayfish, Pontastacus leptodactylus (Eschscholtz, 1823). Repeatability of critical thermal maximum (CTmax) in two freshwater ectotherms across contexts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1