Gerardo Tusman, Stephan H Böhm, Nora Fuentes, Cecilia M Acosta, Daniel Absi, Carlos Climente, Fernando Suarez Sipmann
{"title":"体外循环过程中大血流动力学操作对手指微循环影响的光体积脉搏波信号成分评估。","authors":"Gerardo Tusman, Stephan H Böhm, Nora Fuentes, Cecilia M Acosta, Daniel Absi, Carlos Climente, Fernando Suarez Sipmann","doi":"10.1088/1361-6579/ad9af6","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Continuous monitoring of the hemodynamic coherence between macro and microcirculation is difficult at the bedside. We tested the role of photoplethysmography (PPG) to real-time assessment of microcirculation during extreme manipulation of macrohemodynamics induced by the cardiopulmonary bypass (CPB).<i>Approach.</i>We analyzed the alternating (AC) and direct (DC) components of the finger PPG in 12 patients undergoing cardiac surgery with CPB at five moments: (1) before-CPB; (2) CPB-start, at the transition from pulsatile to non-pulsatile blood flow; (3) CPB-aortic clamping, at a sudden decrease in pump blood flow and volemia.; (4) CPB-weaning, during step-wise 20% decreases in pump blood flow and opposite proportional increases in native pulsatile blood flow; and (5) after-CPB.<i>Main results.</i>Nine Caucasian men and three women were included for analysis. Macrohemodynamic changes during CPB had an immediate impact on the PPG at all studied moments. Before-CPB the AC signal amplitude showed a median and IQR values of 0.0023(0.0013). The AC signal completely disappeared at CPB-start and at CPB-aortic clamping. During CPB weaning its amplitude progressively increased but remained lower than before CPB, at 80% [0.0008 (0.0005);<i>p</i>< 0.001], 60% [0.0010(0.0006);<i>p</i>< 0.001], and 40% [0.0013(0.0009);<i>p</i>= 0.011] of CPB flow. The AC amplitude returned close to Before-CPB values at 20% of CPB flow [0.0015(0.0008);<i>p</i>= 0.081], when CPB was completely stopped [0.0019 (0.0009);<i>p</i>= 0.348], and at after-CPB [0.0021(0.0009);<i>p</i>= 0.687]. The DC signal Before-CPB [0.95(0.02)] did not differ statistically from CPB-start, CPB-weaning and After-CPB. However, at CPB-aortic clamping, at no flow and a sudden drop in volemia, the DC signal decreased from [0.96(0.01)] to [0.94(0.02);<i>p</i>= 0.002].<i>Significance.</i>The macrohemodynamic alterations brought on by CPB were consistent with changes in the finger's microcirculation. PPG described local pulsatile blood flow (AC) as well as non-pulsatile blood flow and volemia (DC) in the finger. These findings provide plausibility to the use of PPG in ongoing hemodynamic coherence monitoring.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of macrohemodynamic manipulations during cardiopulmonary bypass on finger microcirculation assessed by photoplethysmography signal components.\",\"authors\":\"Gerardo Tusman, Stephan H Böhm, Nora Fuentes, Cecilia M Acosta, Daniel Absi, Carlos Climente, Fernando Suarez Sipmann\",\"doi\":\"10.1088/1361-6579/ad9af6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective.</i>Continuous monitoring of the hemodynamic coherence between macro and microcirculation is difficult at the bedside. We tested the role of photoplethysmography (PPG) to real-time assessment of microcirculation during extreme manipulation of macrohemodynamics induced by the cardiopulmonary bypass (CPB).<i>Approach.</i>We analyzed the alternating (AC) and direct (DC) components of the finger PPG in 12 patients undergoing cardiac surgery with CPB at five moments: (1) before-CPB; (2) CPB-start, at the transition from pulsatile to non-pulsatile blood flow; (3) CPB-aortic clamping, at a sudden decrease in pump blood flow and volemia.; (4) CPB-weaning, during step-wise 20% decreases in pump blood flow and opposite proportional increases in native pulsatile blood flow; and (5) after-CPB.<i>Main results.</i>Nine Caucasian men and three women were included for analysis. Macrohemodynamic changes during CPB had an immediate impact on the PPG at all studied moments. Before-CPB the AC signal amplitude showed a median and IQR values of 0.0023(0.0013). The AC signal completely disappeared at CPB-start and at CPB-aortic clamping. During CPB weaning its amplitude progressively increased but remained lower than before CPB, at 80% [0.0008 (0.0005);<i>p</i>< 0.001], 60% [0.0010(0.0006);<i>p</i>< 0.001], and 40% [0.0013(0.0009);<i>p</i>= 0.011] of CPB flow. The AC amplitude returned close to Before-CPB values at 20% of CPB flow [0.0015(0.0008);<i>p</i>= 0.081], when CPB was completely stopped [0.0019 (0.0009);<i>p</i>= 0.348], and at after-CPB [0.0021(0.0009);<i>p</i>= 0.687]. The DC signal Before-CPB [0.95(0.02)] did not differ statistically from CPB-start, CPB-weaning and After-CPB. However, at CPB-aortic clamping, at no flow and a sudden drop in volemia, the DC signal decreased from [0.96(0.01)] to [0.94(0.02);<i>p</i>= 0.002].<i>Significance.</i>The macrohemodynamic alterations brought on by CPB were consistent with changes in the finger's microcirculation. PPG described local pulsatile blood flow (AC) as well as non-pulsatile blood flow and volemia (DC) in the finger. These findings provide plausibility to the use of PPG in ongoing hemodynamic coherence monitoring.</p>\",\"PeriodicalId\":20047,\"journal\":{\"name\":\"Physiological measurement\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6579/ad9af6\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological measurement","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6579/ad9af6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Impact of macrohemodynamic manipulations during cardiopulmonary bypass on finger microcirculation assessed by photoplethysmography signal components.
Objective.Continuous monitoring of the hemodynamic coherence between macro and microcirculation is difficult at the bedside. We tested the role of photoplethysmography (PPG) to real-time assessment of microcirculation during extreme manipulation of macrohemodynamics induced by the cardiopulmonary bypass (CPB).Approach.We analyzed the alternating (AC) and direct (DC) components of the finger PPG in 12 patients undergoing cardiac surgery with CPB at five moments: (1) before-CPB; (2) CPB-start, at the transition from pulsatile to non-pulsatile blood flow; (3) CPB-aortic clamping, at a sudden decrease in pump blood flow and volemia.; (4) CPB-weaning, during step-wise 20% decreases in pump blood flow and opposite proportional increases in native pulsatile blood flow; and (5) after-CPB.Main results.Nine Caucasian men and three women were included for analysis. Macrohemodynamic changes during CPB had an immediate impact on the PPG at all studied moments. Before-CPB the AC signal amplitude showed a median and IQR values of 0.0023(0.0013). The AC signal completely disappeared at CPB-start and at CPB-aortic clamping. During CPB weaning its amplitude progressively increased but remained lower than before CPB, at 80% [0.0008 (0.0005);p< 0.001], 60% [0.0010(0.0006);p< 0.001], and 40% [0.0013(0.0009);p= 0.011] of CPB flow. The AC amplitude returned close to Before-CPB values at 20% of CPB flow [0.0015(0.0008);p= 0.081], when CPB was completely stopped [0.0019 (0.0009);p= 0.348], and at after-CPB [0.0021(0.0009);p= 0.687]. The DC signal Before-CPB [0.95(0.02)] did not differ statistically from CPB-start, CPB-weaning and After-CPB. However, at CPB-aortic clamping, at no flow and a sudden drop in volemia, the DC signal decreased from [0.96(0.01)] to [0.94(0.02);p= 0.002].Significance.The macrohemodynamic alterations brought on by CPB were consistent with changes in the finger's microcirculation. PPG described local pulsatile blood flow (AC) as well as non-pulsatile blood flow and volemia (DC) in the finger. These findings provide plausibility to the use of PPG in ongoing hemodynamic coherence monitoring.
期刊介绍:
Physiological Measurement publishes papers about the quantitative assessment and visualization of physiological function in clinical research and practice, with an emphasis on the development of new methods of measurement and their validation.
Papers are published on topics including:
applied physiology in illness and health
electrical bioimpedance, optical and acoustic measurement techniques
advanced methods of time series and other data analysis
biomedical and clinical engineering
in-patient and ambulatory monitoring
point-of-care technologies
novel clinical measurements of cardiovascular, neurological, and musculoskeletal systems.
measurements in molecular, cellular and organ physiology and electrophysiology
physiological modeling and simulation
novel biomedical sensors, instruments, devices and systems
measurement standards and guidelines.