达格列净和Sirtuin-1的相互作用及其改善链脲佐菌素诱导的啮齿动物糖尿病模型心房颤动的机制

0 MEDICINE, RESEARCH & EXPERIMENTAL Biomolecules & biomedicine Pub Date : 2025-01-30 DOI:10.17305/bb.2024.11361
Wei-Chieh Lee, Yu-Wen Lin, Jhih-Yuan Shih, Zhih-Cherng Chen, Nan-Chun Wu, Wei-Ting Chang, Ping-Yen Liu
{"title":"达格列净和Sirtuin-1的相互作用及其改善链脲佐菌素诱导的啮齿动物糖尿病模型心房颤动的机制","authors":"Wei-Chieh Lee, Yu-Wen Lin, Jhih-Yuan Shih, Zhih-Cherng Chen, Nan-Chun Wu, Wei-Ting Chang, Ping-Yen Liu","doi":"10.17305/bb.2024.11361","DOIUrl":null,"url":null,"abstract":"<p><p>The incidence of atrial fibrillation (AF) increases with age and is particularly high in individuals with diabetes. Sodium-glucose cotransporter-2 inhibitors (SGLT2i), such as dapagliflozin, show promise in treating heart failure (HF) and reducing the risk of AF. Sirtuin 1 (SIRT1), a key enzyme in metabolic regulation, may be influenced by SGLT2i and play a role in the development of AF. This study investigates the relationship between dapagliflozin therapy and atrial tachyarrhythmia in diabetic cardiomyopathy, with a focus on the role of SIRT1. A streptozotocin (STZ)-induced diabetes mellitus (DM) rat model was used to assess AF across four groups: sham, STZ, STZ with dapagliflozin, and STZ with dapagliflozin + sirtinol (a SIRT1 inhibitor). Additionally, HL-1 cardiomyocytes were cultured under high glucose (HG) conditions and treated with dapagliflozin, with or without sirtinol. In the rat model, dapagliflozin improved atrial fibrosis and reduced AF inducibility and duration-effects that were partially reversed by sirtinol. These findings suggest that dapagliflozin may alleviate cardiac fibrosis and atrial arrhythmia by modulating SIRT1. In HL-1 cells under HG conditions, dapagliflozin reduced apoptosis, restored autophagy and mitophagy, and improved calcium channel activity. However, sirtinol negated these protective effects. Dapagliflozin helped normalize autophagy, mitophagy, and calcium handling, while sirtinol diminished its protective effects, highlighting the key role of SIRT1 in regulating calcium handling under HG conditions. Overall, SIRT1 plays a protective role in diabetic cardiomyopathy by reducing apoptosis, regulating autophagy and mitophagy, and modulating calcium channel activity. Dapagliflozin reduces AF duration and inducibility in the STZ model, likely through SIRT1 upregulation and calcium channel modulation.</p>","PeriodicalId":72398,"journal":{"name":"Biomolecules & biomedicine","volume":" ","pages":"608-622"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dapagliflozin and Sirtuin-1 interaction and mechanism for ameliorating atrial fibrillation in a streptozotocin-induced rodent diabetic model.\",\"authors\":\"Wei-Chieh Lee, Yu-Wen Lin, Jhih-Yuan Shih, Zhih-Cherng Chen, Nan-Chun Wu, Wei-Ting Chang, Ping-Yen Liu\",\"doi\":\"10.17305/bb.2024.11361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The incidence of atrial fibrillation (AF) increases with age and is particularly high in individuals with diabetes. Sodium-glucose cotransporter-2 inhibitors (SGLT2i), such as dapagliflozin, show promise in treating heart failure (HF) and reducing the risk of AF. Sirtuin 1 (SIRT1), a key enzyme in metabolic regulation, may be influenced by SGLT2i and play a role in the development of AF. This study investigates the relationship between dapagliflozin therapy and atrial tachyarrhythmia in diabetic cardiomyopathy, with a focus on the role of SIRT1. A streptozotocin (STZ)-induced diabetes mellitus (DM) rat model was used to assess AF across four groups: sham, STZ, STZ with dapagliflozin, and STZ with dapagliflozin + sirtinol (a SIRT1 inhibitor). Additionally, HL-1 cardiomyocytes were cultured under high glucose (HG) conditions and treated with dapagliflozin, with or without sirtinol. In the rat model, dapagliflozin improved atrial fibrosis and reduced AF inducibility and duration-effects that were partially reversed by sirtinol. These findings suggest that dapagliflozin may alleviate cardiac fibrosis and atrial arrhythmia by modulating SIRT1. In HL-1 cells under HG conditions, dapagliflozin reduced apoptosis, restored autophagy and mitophagy, and improved calcium channel activity. However, sirtinol negated these protective effects. Dapagliflozin helped normalize autophagy, mitophagy, and calcium handling, while sirtinol diminished its protective effects, highlighting the key role of SIRT1 in regulating calcium handling under HG conditions. Overall, SIRT1 plays a protective role in diabetic cardiomyopathy by reducing apoptosis, regulating autophagy and mitophagy, and modulating calcium channel activity. Dapagliflozin reduces AF duration and inducibility in the STZ model, likely through SIRT1 upregulation and calcium channel modulation.</p>\",\"PeriodicalId\":72398,\"journal\":{\"name\":\"Biomolecules & biomedicine\",\"volume\":\" \",\"pages\":\"608-622\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules & biomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17305/bb.2024.11361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17305/bb.2024.11361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

心房颤动(AF)的发病率随着年龄的增长而增加,在糖尿病患者中尤其高。钠-葡萄糖共转运蛋白-2抑制剂(SGLT2i),如达格列清,在治疗心力衰竭(HF)和降低房颤风险方面显示出希望。SIRT1是代谢调节的关键酶,可能受到SGLT2i的影响,并在房颤的发展中发挥作用。本研究探讨了达格列清治疗与糖尿病心肌病心房性心动过速的关系,重点研究了SIRT1的作用。采用链脲佐菌素(STZ)诱导的糖尿病(DM)大鼠模型评估四组房颤:假手术组、STZ组、STZ组联合达格列净组、STZ组联合达格列净+ sirtinol (SIRT1抑制剂)组。此外,在高糖(HG)条件下培养HL-1心肌细胞,并使用达格列净(含或不含sirtinol)处理。在大鼠模型中,达格列净改善了心房纤维化,降低了心房颤动的诱导性和持续时间效应,而这一效应被sirtinol部分逆转。这些发现表明,达格列净可能通过调节SIRT1减轻心脏纤维化和心房心律失常。在HG条件下的HL-1细胞中,达格列净减少凋亡,恢复自噬和有丝分裂,提高钙通道活性。然而,sirtinol抵消了这些保护作用。达格列净有助于自噬、有丝分裂和钙处理的正常化,而sirtinol则降低了其保护作用,突出了SIRT1在HG条件下调节钙处理的关键作用。综上所述,SIRT1通过减少细胞凋亡、调节自噬和线粒体自噬以及调节钙通道活性在糖尿病心肌病中发挥保护作用。达格列净在STZ模型中减少AF持续时间和诱导性,可能是通过SIRT1上调和钙通道调节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dapagliflozin and Sirtuin-1 interaction and mechanism for ameliorating atrial fibrillation in a streptozotocin-induced rodent diabetic model.

The incidence of atrial fibrillation (AF) increases with age and is particularly high in individuals with diabetes. Sodium-glucose cotransporter-2 inhibitors (SGLT2i), such as dapagliflozin, show promise in treating heart failure (HF) and reducing the risk of AF. Sirtuin 1 (SIRT1), a key enzyme in metabolic regulation, may be influenced by SGLT2i and play a role in the development of AF. This study investigates the relationship between dapagliflozin therapy and atrial tachyarrhythmia in diabetic cardiomyopathy, with a focus on the role of SIRT1. A streptozotocin (STZ)-induced diabetes mellitus (DM) rat model was used to assess AF across four groups: sham, STZ, STZ with dapagliflozin, and STZ with dapagliflozin + sirtinol (a SIRT1 inhibitor). Additionally, HL-1 cardiomyocytes were cultured under high glucose (HG) conditions and treated with dapagliflozin, with or without sirtinol. In the rat model, dapagliflozin improved atrial fibrosis and reduced AF inducibility and duration-effects that were partially reversed by sirtinol. These findings suggest that dapagliflozin may alleviate cardiac fibrosis and atrial arrhythmia by modulating SIRT1. In HL-1 cells under HG conditions, dapagliflozin reduced apoptosis, restored autophagy and mitophagy, and improved calcium channel activity. However, sirtinol negated these protective effects. Dapagliflozin helped normalize autophagy, mitophagy, and calcium handling, while sirtinol diminished its protective effects, highlighting the key role of SIRT1 in regulating calcium handling under HG conditions. Overall, SIRT1 plays a protective role in diabetic cardiomyopathy by reducing apoptosis, regulating autophagy and mitophagy, and modulating calcium channel activity. Dapagliflozin reduces AF duration and inducibility in the STZ model, likely through SIRT1 upregulation and calcium channel modulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
期刊最新文献
Methylene blue mitigates lung injury in HCA rats by regulating macrophage pyroptosis via Nrf2/HO-1 and NLRP3 pathways. Andrographolide suppresses cervical cancer progression by targeting angiogenesis and inducing apoptosis in a CAM-PDX model. Multi-omics reveals that ST6GAL1 promotes colorectal cancer progression through LGALS3BP sialylation. Jianpi Yiqi Busui prescription alleviates myasthenia gravis by regulating Th17 through the TAK1/P38 MAPK/eIF-4E signaling pathway. Fecal microbiota transplantation alleviates radiation enteritis by modulating gut microbiota and metabolite profiles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1