Homood Alharbi, Mohammad Ahmad, Zhong Cui, Dong Meng, Ying Xin, Xues Yan
{"title":"急性髓性白血病潜在生物标志物和通路的鉴定:钙调磷酸酶信号通路与急性髓性白血病血管脆性的相关性","authors":"Homood Alharbi, Mohammad Ahmad, Zhong Cui, Dong Meng, Ying Xin, Xues Yan","doi":"10.1111/ijlh.14410","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objective</h3>\n \n <p>In this study, clinical bioinformatics analysis was used to identify potential biomarkers of acute myeloid leukemia (AML) occurrence and development, drug resistance, and poor prognosis to provide a theoretical basis for the treatment of AML.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>On the basis of the TCGA, GEO, and GTEx databases, an AML secondary database was established, and differential expression analysis and WGCNA were carried out to identify genes related to the prognosis of AML patients. Survival analysis was carried out for internal verification of key genes, and GEO data were used for external verification to obtain core genes related to prognosis. For differentially expressed genes, the EpiMed platform independently developed by the team was used for drug prediction.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>A total of 36 overlapping genes were obtained via difference analysis and WGCNA. Enrichment analysis revealed that the overlapping genes were associated with neutrophil activation, transcription dysregulation, AML, apoptosis, and other biological indicators. A protein interaction network was constructed for NCOA4, ACSL4, DPP4, ATL1, MT1G, ALOX15, and SLC7A11, which are key genes. Survival analysis revealed that NCOA4, ACSL4, DPP4, and ATL1 significantly affected the survival of patients with AML. The GSE142698 dataset verified that MPO, BCL2A1, and STMN1 had a statistically significant impact on the survival of AML patients.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>NCOA4, ACSL4, DPP4, and ATL1 may be potential biomarkers related to the survival and prognosis of patients with AML, and the calcineurin signaling pathway is associated with the risk of vascular fragility in AML patients, which can provide a reference for further research and optimization of treatment regimens.</p>\n </section>\n </div>","PeriodicalId":14120,"journal":{"name":"International Journal of Laboratory Hematology","volume":"47 2","pages":"288-296"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of Potential Biomarkers and Pathways in Acute Myeloid Leukemia: Correlation Between the Calcineurin Signaling Pathway and Vascular Brittleness in Acute Myeloid Leukemia\",\"authors\":\"Homood Alharbi, Mohammad Ahmad, Zhong Cui, Dong Meng, Ying Xin, Xues Yan\",\"doi\":\"10.1111/ijlh.14410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Objective</h3>\\n \\n <p>In this study, clinical bioinformatics analysis was used to identify potential biomarkers of acute myeloid leukemia (AML) occurrence and development, drug resistance, and poor prognosis to provide a theoretical basis for the treatment of AML.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>On the basis of the TCGA, GEO, and GTEx databases, an AML secondary database was established, and differential expression analysis and WGCNA were carried out to identify genes related to the prognosis of AML patients. Survival analysis was carried out for internal verification of key genes, and GEO data were used for external verification to obtain core genes related to prognosis. For differentially expressed genes, the EpiMed platform independently developed by the team was used for drug prediction.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>A total of 36 overlapping genes were obtained via difference analysis and WGCNA. Enrichment analysis revealed that the overlapping genes were associated with neutrophil activation, transcription dysregulation, AML, apoptosis, and other biological indicators. A protein interaction network was constructed for NCOA4, ACSL4, DPP4, ATL1, MT1G, ALOX15, and SLC7A11, which are key genes. Survival analysis revealed that NCOA4, ACSL4, DPP4, and ATL1 significantly affected the survival of patients with AML. The GSE142698 dataset verified that MPO, BCL2A1, and STMN1 had a statistically significant impact on the survival of AML patients.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>NCOA4, ACSL4, DPP4, and ATL1 may be potential biomarkers related to the survival and prognosis of patients with AML, and the calcineurin signaling pathway is associated with the risk of vascular fragility in AML patients, which can provide a reference for further research and optimization of treatment regimens.</p>\\n </section>\\n </div>\",\"PeriodicalId\":14120,\"journal\":{\"name\":\"International Journal of Laboratory Hematology\",\"volume\":\"47 2\",\"pages\":\"288-296\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Laboratory Hematology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ijlh.14410\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Laboratory Hematology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijlh.14410","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Identification of Potential Biomarkers and Pathways in Acute Myeloid Leukemia: Correlation Between the Calcineurin Signaling Pathway and Vascular Brittleness in Acute Myeloid Leukemia
Objective
In this study, clinical bioinformatics analysis was used to identify potential biomarkers of acute myeloid leukemia (AML) occurrence and development, drug resistance, and poor prognosis to provide a theoretical basis for the treatment of AML.
Methods
On the basis of the TCGA, GEO, and GTEx databases, an AML secondary database was established, and differential expression analysis and WGCNA were carried out to identify genes related to the prognosis of AML patients. Survival analysis was carried out for internal verification of key genes, and GEO data were used for external verification to obtain core genes related to prognosis. For differentially expressed genes, the EpiMed platform independently developed by the team was used for drug prediction.
Results
A total of 36 overlapping genes were obtained via difference analysis and WGCNA. Enrichment analysis revealed that the overlapping genes were associated with neutrophil activation, transcription dysregulation, AML, apoptosis, and other biological indicators. A protein interaction network was constructed for NCOA4, ACSL4, DPP4, ATL1, MT1G, ALOX15, and SLC7A11, which are key genes. Survival analysis revealed that NCOA4, ACSL4, DPP4, and ATL1 significantly affected the survival of patients with AML. The GSE142698 dataset verified that MPO, BCL2A1, and STMN1 had a statistically significant impact on the survival of AML patients.
Conclusion
NCOA4, ACSL4, DPP4, and ATL1 may be potential biomarkers related to the survival and prognosis of patients with AML, and the calcineurin signaling pathway is associated with the risk of vascular fragility in AML patients, which can provide a reference for further research and optimization of treatment regimens.
期刊介绍:
The International Journal of Laboratory Hematology provides a forum for the communication of new developments, research topics and the practice of laboratory haematology.
The journal publishes invited reviews, full length original articles, and correspondence.
The International Journal of Laboratory Hematology is the official journal of the International Society for Laboratory Hematology, which addresses the following sub-disciplines: cellular analysis, flow cytometry, haemostasis and thrombosis, molecular diagnostics, haematology informatics, haemoglobinopathies, point of care testing, standards and guidelines.
The journal was launched in 2006 as the successor to Clinical and Laboratory Hematology, which was first published in 1979. An active and positive editorial policy ensures that work of a high scientific standard is reported, in order to bridge the gap between practical and academic aspects of laboratory haematology.