{"title":"人类视觉系统的持续时间整合。","authors":"Michele Deodato, David Melcher","doi":"10.1167/jov.24.13.5","DOIUrl":null,"url":null,"abstract":"<p><p>The human visual system is continuously processing visual information to maintain a coherent perception of the environment. Temporal integration, a critical aspect of this process, allows for the combination of visual inputs over time, enhancing the signal-to-noise ratio and supporting high-level cognitive functions. Traditional methods for measuring temporal integration often require a large number of trials made up of a fixation period, stimuli separated by a blank interval, a single forced choice, and then a pause before the next trial. This trial structure potentially introduces fatigue and biases. Here, we introduce a novel continuous temporal integration (CTI) task designed to overcome these limitations by allowing free visual exploration and continuous mouse responses to dynamic stimuli. Fifty participants performed the CTI, which involved adjusting a red bar to indicate the point where a flickering sine wave grating became indistinguishable from noise. Our results, modeled by an exponential function, indicate a reliable temporal integration window of ∼100 ms. The CTI's design facilitates rapid and reliable measurement of temporal integration, demonstrating potential for broader applications across different populations and experimental settings. This task provides a more naturalistic and efficient approach to understanding this fundamental aspect of visual perception.</p>","PeriodicalId":49955,"journal":{"name":"Journal of Vision","volume":"24 13","pages":"5"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622157/pdf/","citationCount":"0","resultStr":"{\"title\":\"Continuous temporal integration in the human visual system.\",\"authors\":\"Michele Deodato, David Melcher\",\"doi\":\"10.1167/jov.24.13.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The human visual system is continuously processing visual information to maintain a coherent perception of the environment. Temporal integration, a critical aspect of this process, allows for the combination of visual inputs over time, enhancing the signal-to-noise ratio and supporting high-level cognitive functions. Traditional methods for measuring temporal integration often require a large number of trials made up of a fixation period, stimuli separated by a blank interval, a single forced choice, and then a pause before the next trial. This trial structure potentially introduces fatigue and biases. Here, we introduce a novel continuous temporal integration (CTI) task designed to overcome these limitations by allowing free visual exploration and continuous mouse responses to dynamic stimuli. Fifty participants performed the CTI, which involved adjusting a red bar to indicate the point where a flickering sine wave grating became indistinguishable from noise. Our results, modeled by an exponential function, indicate a reliable temporal integration window of ∼100 ms. The CTI's design facilitates rapid and reliable measurement of temporal integration, demonstrating potential for broader applications across different populations and experimental settings. This task provides a more naturalistic and efficient approach to understanding this fundamental aspect of visual perception.</p>\",\"PeriodicalId\":49955,\"journal\":{\"name\":\"Journal of Vision\",\"volume\":\"24 13\",\"pages\":\"5\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622157/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vision\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1167/jov.24.13.5\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vision","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/jov.24.13.5","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Continuous temporal integration in the human visual system.
The human visual system is continuously processing visual information to maintain a coherent perception of the environment. Temporal integration, a critical aspect of this process, allows for the combination of visual inputs over time, enhancing the signal-to-noise ratio and supporting high-level cognitive functions. Traditional methods for measuring temporal integration often require a large number of trials made up of a fixation period, stimuli separated by a blank interval, a single forced choice, and then a pause before the next trial. This trial structure potentially introduces fatigue and biases. Here, we introduce a novel continuous temporal integration (CTI) task designed to overcome these limitations by allowing free visual exploration and continuous mouse responses to dynamic stimuli. Fifty participants performed the CTI, which involved adjusting a red bar to indicate the point where a flickering sine wave grating became indistinguishable from noise. Our results, modeled by an exponential function, indicate a reliable temporal integration window of ∼100 ms. The CTI's design facilitates rapid and reliable measurement of temporal integration, demonstrating potential for broader applications across different populations and experimental settings. This task provides a more naturalistic and efficient approach to understanding this fundamental aspect of visual perception.
期刊介绍:
Exploring all aspects of biological visual function, including spatial vision, perception,
low vision, color vision and more, spanning the fields of neuroscience, psychology and psychophysics.