深度学习模型可以根据临床记录预测针对医疗服务提供者的暴力和威胁。

Nicholas J. Dobbins, Jacqueline Chipkin, Tim Byrne, Omar Ghabra, Julia Siar, Mitchell Sauder, R. Michael Huijon, Taylor M. Black
{"title":"深度学习模型可以根据临床记录预测针对医疗服务提供者的暴力和威胁。","authors":"Nicholas J. Dobbins, Jacqueline Chipkin, Tim Byrne, Omar Ghabra, Julia Siar, Mitchell Sauder, R. Michael Huijon, Taylor M. Black","doi":"10.1038/s44184-024-00105-7","DOIUrl":null,"url":null,"abstract":"Violence, verbal abuse, threats, and sexual harassment of healthcare providers by patients is a major challenge for healthcare organizations around the world, contributing to staff turnover, distress, absenteeism, reduced job satisfaction, and worsening mental and physical health. To enable interventions prior to possible violent episodes, we trained two deep learning models to predict violence against healthcare workers 3 days prior to violent events for case and control patients. The first model is a document classification model using clinical notes, and the second is a baseline regression model using largely structured data. Our document classification model achieved an F1 score of 0.75 while our model using structured data achieved an F1 of 0.72, both exceeding the predictive performance of a psychiatry team who reviewed the same documents (0.5 F1). To aid in the explainability and understanding of risk factors for violent events, we additionally trained a named entity recognition classifier on annotations of the same corpus, which achieved an overall F1 of 0.7. This study demonstrates the first deep learning model capable of predicting violent events within healthcare settings using clinical notes, surpassing the first published baseline of human experts. We anticipate our methods can be generalized and extended to enable intervention at other hospital systems.","PeriodicalId":74321,"journal":{"name":"Npj mental health research","volume":" ","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44184-024-00105-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Deep learning models can predict violence and threats against healthcare providers using clinical notes\",\"authors\":\"Nicholas J. Dobbins, Jacqueline Chipkin, Tim Byrne, Omar Ghabra, Julia Siar, Mitchell Sauder, R. Michael Huijon, Taylor M. Black\",\"doi\":\"10.1038/s44184-024-00105-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Violence, verbal abuse, threats, and sexual harassment of healthcare providers by patients is a major challenge for healthcare organizations around the world, contributing to staff turnover, distress, absenteeism, reduced job satisfaction, and worsening mental and physical health. To enable interventions prior to possible violent episodes, we trained two deep learning models to predict violence against healthcare workers 3 days prior to violent events for case and control patients. The first model is a document classification model using clinical notes, and the second is a baseline regression model using largely structured data. Our document classification model achieved an F1 score of 0.75 while our model using structured data achieved an F1 of 0.72, both exceeding the predictive performance of a psychiatry team who reviewed the same documents (0.5 F1). To aid in the explainability and understanding of risk factors for violent events, we additionally trained a named entity recognition classifier on annotations of the same corpus, which achieved an overall F1 of 0.7. This study demonstrates the first deep learning model capable of predicting violent events within healthcare settings using clinical notes, surpassing the first published baseline of human experts. We anticipate our methods can be generalized and extended to enable intervention at other hospital systems.\",\"PeriodicalId\":74321,\"journal\":{\"name\":\"Npj mental health research\",\"volume\":\" \",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44184-024-00105-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Npj mental health research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44184-024-00105-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npj mental health research","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44184-024-00105-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

患者对医疗保健提供者的暴力、言语虐待、威胁和性骚扰是世界各地医疗保健组织面临的主要挑战,导致员工离职、痛苦、缺勤、工作满意度降低以及身心健康恶化。为了在可能的暴力事件发生之前进行干预,我们训练了两个深度学习模型,以在病例和对照患者的暴力事件发生前3天预测针对医护人员的暴力行为。第一个模型是使用临床记录的文档分类模型,第二个模型是使用大量结构化数据的基线回归模型。我们的文档分类模型的F1得分为0.75,而我们使用结构化数据的模型的F1得分为0.72,两者都超过了审查相同文档的精神病学团队的预测性能(0.5 F1)。为了帮助解释和理解暴力事件的风险因素,我们在同一语料库的注释上额外训练了一个命名实体识别分类器,其总体F1达到0.7。这项研究展示了第一个能够使用临床记录预测医疗保健环境中的暴力事件的深度学习模型,超过了人类专家首次发布的基线。我们期望我们的方法可以推广和扩展到其他医院系统的干预。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep learning models can predict violence and threats against healthcare providers using clinical notes
Violence, verbal abuse, threats, and sexual harassment of healthcare providers by patients is a major challenge for healthcare organizations around the world, contributing to staff turnover, distress, absenteeism, reduced job satisfaction, and worsening mental and physical health. To enable interventions prior to possible violent episodes, we trained two deep learning models to predict violence against healthcare workers 3 days prior to violent events for case and control patients. The first model is a document classification model using clinical notes, and the second is a baseline regression model using largely structured data. Our document classification model achieved an F1 score of 0.75 while our model using structured data achieved an F1 of 0.72, both exceeding the predictive performance of a psychiatry team who reviewed the same documents (0.5 F1). To aid in the explainability and understanding of risk factors for violent events, we additionally trained a named entity recognition classifier on annotations of the same corpus, which achieved an overall F1 of 0.7. This study demonstrates the first deep learning model capable of predicting violent events within healthcare settings using clinical notes, surpassing the first published baseline of human experts. We anticipate our methods can be generalized and extended to enable intervention at other hospital systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A qualitative analysis of the psychedelic mushroom come-up and come-down. Decoding substance use disorder severity from clinical notes using a large language model. Prediction of individual patient outcomes to psychotherapy vs medication for major depression. Author Correction: Sex differences in the association between repetitive negative thinking and neurofilament light. Meta analysis of resting frontal alpha asymmetry as a biomarker of depression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1