基于同步加速器传播成像的水凝胶支架力学性能和微观结构表征。

IF 3.3 2区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of the Mechanical Behavior of Biomedical Materials Pub Date : 2024-11-29 DOI:10.1016/j.jmbbm.2024.106844
Naitao Li , Xiaoman Duan , Xiao Fan Ding , Ning Zhu , Xiongbiao Chen
{"title":"基于同步加速器传播成像的水凝胶支架力学性能和微观结构表征。","authors":"Naitao Li ,&nbsp;Xiaoman Duan ,&nbsp;Xiao Fan Ding ,&nbsp;Ning Zhu ,&nbsp;Xiongbiao Chen","doi":"10.1016/j.jmbbm.2024.106844","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogel-based scaffolds have been widely used in soft tissue regeneration due to their biocompatible and tissue-like environment for maintaining cellular functions and tissue regeneration. Understanding the mechanical properties and internal microstructure of hydrogel-based scaffold, once implanted, is imperative in tissue engineering applications and longitudinal studies. Notably, this has been challenging to date as various conventional characterization methods by, for example, mechanical testing (for mechanical properties) and microscope (for internal microstructure) are destructive as they require removing scaffolds from the implantation site and processing samples for characterization. Synchrotron radiation propagation-based imaging–computed tomography (SR-PBI-CT) is feasible and promising for non-destructive visualizing of hydrogel scaffolds. As inspired, this study aimed to perform a study on the characterization of mechanical properties and microstructure of hydrogel scaffolds based on the SR-PBI-CT.</div><div>In this study, hydrogel biomaterial inks composed of 3% w/v alginate and 1% w/v gelatin were printed to form scaffolds, with some scaffolds being degraded over 3 days. Both degraded and undegraded scaffolds underwent compressive testing, with the strains being controlled at the preset values; meanwhile stresses within scaffolds were measuring, resulting the stress-strain curves. Concurrently, the scaffolds were also imaged and examined by SR-PBI-CT at Canadian Light Source (CLS). During the imaging process, the scaffolds were mechanically loaded, respectively, with the strains same as the ones in the aforementioned compressive testing, and at each strain, the scaffold was scanned with a pixel size of 13 μm.</div><div>From the stress-strain curves obtained in the compression testing, the Young's modulus was evaluated to characterize the elastic behavior of scaffolds: with the range between around 5–25 kPa. From the images captured by SR-PBI-CT, the scaffolds microstructures were examined in terms of the strand cross-section area, pore size, and hydrogel volume. Further, from the SR-PBI-CT images, the stress within hydrogel of scaffolds were evaluated, showing the agreement with those obtained from compression testing. These results have illustrated that the mechanical properties and microstructures of scaffolds, ether being degraded or not, can be examined and characterized by the SR-PBI-CT imaging, in a non-destructive manner. This would represent a significant advance for facilitating longitudinal studies on the scaffolds once implanted <em>in-vivo</em>.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"163 ","pages":"Article 106844"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of hydrogel-scaffold mechanical properties and microstructure by using synchrotron propagation-based imaging\",\"authors\":\"Naitao Li ,&nbsp;Xiaoman Duan ,&nbsp;Xiao Fan Ding ,&nbsp;Ning Zhu ,&nbsp;Xiongbiao Chen\",\"doi\":\"10.1016/j.jmbbm.2024.106844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydrogel-based scaffolds have been widely used in soft tissue regeneration due to their biocompatible and tissue-like environment for maintaining cellular functions and tissue regeneration. Understanding the mechanical properties and internal microstructure of hydrogel-based scaffold, once implanted, is imperative in tissue engineering applications and longitudinal studies. Notably, this has been challenging to date as various conventional characterization methods by, for example, mechanical testing (for mechanical properties) and microscope (for internal microstructure) are destructive as they require removing scaffolds from the implantation site and processing samples for characterization. Synchrotron radiation propagation-based imaging–computed tomography (SR-PBI-CT) is feasible and promising for non-destructive visualizing of hydrogel scaffolds. As inspired, this study aimed to perform a study on the characterization of mechanical properties and microstructure of hydrogel scaffolds based on the SR-PBI-CT.</div><div>In this study, hydrogel biomaterial inks composed of 3% w/v alginate and 1% w/v gelatin were printed to form scaffolds, with some scaffolds being degraded over 3 days. Both degraded and undegraded scaffolds underwent compressive testing, with the strains being controlled at the preset values; meanwhile stresses within scaffolds were measuring, resulting the stress-strain curves. Concurrently, the scaffolds were also imaged and examined by SR-PBI-CT at Canadian Light Source (CLS). During the imaging process, the scaffolds were mechanically loaded, respectively, with the strains same as the ones in the aforementioned compressive testing, and at each strain, the scaffold was scanned with a pixel size of 13 μm.</div><div>From the stress-strain curves obtained in the compression testing, the Young's modulus was evaluated to characterize the elastic behavior of scaffolds: with the range between around 5–25 kPa. From the images captured by SR-PBI-CT, the scaffolds microstructures were examined in terms of the strand cross-section area, pore size, and hydrogel volume. Further, from the SR-PBI-CT images, the stress within hydrogel of scaffolds were evaluated, showing the agreement with those obtained from compression testing. These results have illustrated that the mechanical properties and microstructures of scaffolds, ether being degraded or not, can be examined and characterized by the SR-PBI-CT imaging, in a non-destructive manner. This would represent a significant advance for facilitating longitudinal studies on the scaffolds once implanted <em>in-vivo</em>.</div></div>\",\"PeriodicalId\":380,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"volume\":\"163 \",\"pages\":\"Article 106844\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751616124004764\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616124004764","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

水凝胶支架具有生物相容性和类组织环境,可维持细胞功能和组织再生,在软组织再生中得到广泛应用。了解水凝胶支架的力学性能和内部微观结构,一旦植入,在组织工程应用和纵向研究中是必不可少的。值得注意的是,到目前为止,这一直是一个挑战,因为各种传统的表征方法,例如,机械测试(机械性能)和显微镜(内部微观结构)是破坏性的,因为它们需要从植入部位移除支架并处理样品进行表征。基于同步辐射传播的成像计算机断层扫描(SR-PBI-CT)对于水凝胶支架的无损可视化是可行且有前景的。受此启发,本研究旨在基于SR-PBI-CT对水凝胶支架的力学性能和微观结构进行表征研究。本研究将3% w/v海藻酸盐和1% w/v明胶组成的水凝胶生物材料墨水打印成支架,部分支架在3天内降解。降解和未降解支架均进行压缩试验,应变控制在预设值;同时测量支架内部应力,得到应力-应变曲线。同时,在加拿大光源(CLS)下对支架进行SR-PBI-CT成像和检查。成像过程中,分别对支架进行机械加载,其应变与上述压缩试验相同,在每个应变下对支架进行像素尺寸为13 μm的扫描。根据压缩试验获得的应力-应变曲线,评估杨氏模量来表征支架的弹性行为:范围在5-25 kPa左右。根据SR-PBI-CT采集的图像,对支架的微观结构进行了链截面积、孔径和水凝胶体积的检测。此外,通过SR-PBI-CT图像对支架水凝胶内的应力进行了评估,结果与压缩试验结果一致。这些结果表明,无论是否降解,都可以通过SR-PBI-CT成像以非破坏性的方式检测和表征支架的力学性能和微观结构。这对于促进支架在体内植入后的纵向研究来说是一个重大的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterization of hydrogel-scaffold mechanical properties and microstructure by using synchrotron propagation-based imaging
Hydrogel-based scaffolds have been widely used in soft tissue regeneration due to their biocompatible and tissue-like environment for maintaining cellular functions and tissue regeneration. Understanding the mechanical properties and internal microstructure of hydrogel-based scaffold, once implanted, is imperative in tissue engineering applications and longitudinal studies. Notably, this has been challenging to date as various conventional characterization methods by, for example, mechanical testing (for mechanical properties) and microscope (for internal microstructure) are destructive as they require removing scaffolds from the implantation site and processing samples for characterization. Synchrotron radiation propagation-based imaging–computed tomography (SR-PBI-CT) is feasible and promising for non-destructive visualizing of hydrogel scaffolds. As inspired, this study aimed to perform a study on the characterization of mechanical properties and microstructure of hydrogel scaffolds based on the SR-PBI-CT.
In this study, hydrogel biomaterial inks composed of 3% w/v alginate and 1% w/v gelatin were printed to form scaffolds, with some scaffolds being degraded over 3 days. Both degraded and undegraded scaffolds underwent compressive testing, with the strains being controlled at the preset values; meanwhile stresses within scaffolds were measuring, resulting the stress-strain curves. Concurrently, the scaffolds were also imaged and examined by SR-PBI-CT at Canadian Light Source (CLS). During the imaging process, the scaffolds were mechanically loaded, respectively, with the strains same as the ones in the aforementioned compressive testing, and at each strain, the scaffold was scanned with a pixel size of 13 μm.
From the stress-strain curves obtained in the compression testing, the Young's modulus was evaluated to characterize the elastic behavior of scaffolds: with the range between around 5–25 kPa. From the images captured by SR-PBI-CT, the scaffolds microstructures were examined in terms of the strand cross-section area, pore size, and hydrogel volume. Further, from the SR-PBI-CT images, the stress within hydrogel of scaffolds were evaluated, showing the agreement with those obtained from compression testing. These results have illustrated that the mechanical properties and microstructures of scaffolds, ether being degraded or not, can be examined and characterized by the SR-PBI-CT imaging, in a non-destructive manner. This would represent a significant advance for facilitating longitudinal studies on the scaffolds once implanted in-vivo.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Mechanical Behavior of Biomedical Materials
Journal of the Mechanical Behavior of Biomedical Materials 工程技术-材料科学:生物材料
CiteScore
7.20
自引率
7.70%
发文量
505
审稿时长
46 days
期刊介绍: The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials. The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.
期刊最新文献
Editorial Board Mechanical modulation of docetaxel-treated bladder cancer cells by various changes in cytoskeletal structures Evaluation of wear, corrosion, and biocompatibility of a novel biomedical TiZr-based medium entropy alloy On the repeatability of wrinkling topography patterns in the fingers of water immersed human skin Skeletal impacts of dual in vivo compressive axial tibial and ulnar loading in mice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1