M.A. Oude Vrielink , P.H.M. Timmermans , B. van de Wetering , R. Hovenkamp , O. van der Sluis
{"title":"血管组织损伤的计算模型用于安全介入装置的开发。","authors":"M.A. Oude Vrielink , P.H.M. Timmermans , B. van de Wetering , R. Hovenkamp , O. van der Sluis","doi":"10.1016/j.jmbbm.2024.106818","DOIUrl":null,"url":null,"abstract":"<div><div>During intravascular procedures, medical devices interact mechanically with vascular tissue. The device design faces a trade-off: although a high bending stiffness improves its maneuvrability and deliverability, it may also trigger excessive supra-physiological loading that may result in tissue damage. In particular, the collagen fibers in vascular walls are load-bearing but may rupture on a microscopic scale due to mechanical interaction. When the mechanical load increases even further, tissue rupture or puncture occurs. To mitigate tissue damage, the current work focusses on the development of computational Finite Element (FE) based models wherein state-of-the-art constitutive tissue models are applied toward the design of safe devices. Several experiments are presented for tissue characterization in which device-mimicking indenters are pressed onto a porcine tissue. In these experiments, the Mullins effect, which is related to tissue damage, is observed. Consequently, the mechanical behavior of tissue, including the evolution of damage-induced energy dissipation, is accurately described by adopting a hyperelastic model incorporating the damage approach by Weisbecker et al. (2012). From the experimentally validated computational model, a novel design criterion is established, which allows for safe device development. Furthermore, an energy density criterion for the onset of puncture is proposed. With these tools, several frequently used work-horse guidewires are numerically evaluated.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"163 ","pages":"Article 106818"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational modeling of vascular tissue damage for the development of safe interventional devices\",\"authors\":\"M.A. Oude Vrielink , P.H.M. Timmermans , B. van de Wetering , R. Hovenkamp , O. van der Sluis\",\"doi\":\"10.1016/j.jmbbm.2024.106818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>During intravascular procedures, medical devices interact mechanically with vascular tissue. The device design faces a trade-off: although a high bending stiffness improves its maneuvrability and deliverability, it may also trigger excessive supra-physiological loading that may result in tissue damage. In particular, the collagen fibers in vascular walls are load-bearing but may rupture on a microscopic scale due to mechanical interaction. When the mechanical load increases even further, tissue rupture or puncture occurs. To mitigate tissue damage, the current work focusses on the development of computational Finite Element (FE) based models wherein state-of-the-art constitutive tissue models are applied toward the design of safe devices. Several experiments are presented for tissue characterization in which device-mimicking indenters are pressed onto a porcine tissue. In these experiments, the Mullins effect, which is related to tissue damage, is observed. Consequently, the mechanical behavior of tissue, including the evolution of damage-induced energy dissipation, is accurately described by adopting a hyperelastic model incorporating the damage approach by Weisbecker et al. (2012). From the experimentally validated computational model, a novel design criterion is established, which allows for safe device development. Furthermore, an energy density criterion for the onset of puncture is proposed. With these tools, several frequently used work-horse guidewires are numerically evaluated.</div></div>\",\"PeriodicalId\":380,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"volume\":\"163 \",\"pages\":\"Article 106818\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751616124004508\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616124004508","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Computational modeling of vascular tissue damage for the development of safe interventional devices
During intravascular procedures, medical devices interact mechanically with vascular tissue. The device design faces a trade-off: although a high bending stiffness improves its maneuvrability and deliverability, it may also trigger excessive supra-physiological loading that may result in tissue damage. In particular, the collagen fibers in vascular walls are load-bearing but may rupture on a microscopic scale due to mechanical interaction. When the mechanical load increases even further, tissue rupture or puncture occurs. To mitigate tissue damage, the current work focusses on the development of computational Finite Element (FE) based models wherein state-of-the-art constitutive tissue models are applied toward the design of safe devices. Several experiments are presented for tissue characterization in which device-mimicking indenters are pressed onto a porcine tissue. In these experiments, the Mullins effect, which is related to tissue damage, is observed. Consequently, the mechanical behavior of tissue, including the evolution of damage-induced energy dissipation, is accurately described by adopting a hyperelastic model incorporating the damage approach by Weisbecker et al. (2012). From the experimentally validated computational model, a novel design criterion is established, which allows for safe device development. Furthermore, an energy density criterion for the onset of puncture is proposed. With these tools, several frequently used work-horse guidewires are numerically evaluated.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.