水稻-油菜轮作条件下,秸秆还田配施钾肥通过增加复合氧化铁来提高大-大团聚体钾储量

IF 6.1 1区 农林科学 Q1 SOIL SCIENCE Soil & Tillage Research Pub Date : 2024-12-07 DOI:10.1016/j.still.2024.106404
Zhihao Xiong , Ziyi Gao , Jianwei Lu , Yangyang Zhang , Xiaokun Li
{"title":"水稻-油菜轮作条件下,秸秆还田配施钾肥通过增加复合氧化铁来提高大-大团聚体钾储量","authors":"Zhihao Xiong ,&nbsp;Ziyi Gao ,&nbsp;Jianwei Lu ,&nbsp;Yangyang Zhang ,&nbsp;Xiaokun Li","doi":"10.1016/j.still.2024.106404","DOIUrl":null,"url":null,"abstract":"<div><div>Potassium (K) supplementation strategies are required to enhance farm productivity in rice-upland rotations, where intensive cultivation practices often result in K deficiencies. Straw return improves the adsorption of K by increasing the content of soil humic acid in macroaggregates. Iron/aluminium (Fe/Al) oxides promote soil organic carbon storage and aggregate stability by acting as binding agents. However, limited information is available on the effects of Fe/Al oxides on the distribution of aggregate-associated K stocks. A field experiment was performed in the Yangtze River Basin, an area with low K stemming from intensive cultivation, with four fertilization treatments: inorganic nitrogen-phosphorus fertilizer (NP), (NPK), inorganic NP with straw return (NP+St), and inorganic NPK with straw return (NPK+St). Results showed that the straw return (NP+St), K fertilization (NPK) and the combination of both (NPK+St) increased soil exchangeable K content (EK) by 32.6 %, 23.7 % and 53.6 % in the rice season, respectively, and increased by 49.9 %, 25.5 % and 182.0 % in the oilseed rape season, respectively, compared with that of no K addition (NP) treatment. K stocks in macroaggregates accounted for more than 90 % of the total K stocks in all treatments. Straw return and K fertilization increased EK and non-exchangeable K (NEK) stocks in large-macroaggregates (&gt;2 mm) by increasing the aggregate-associated K content and regulating the abundance of aggregate. Redundancy analysis showed that complex iron oxide (Fep) was one of the main factors influencing soil available K. The NP+St and NPK+St treatments increased the proportion of particle size and K stocks by increasing the Fep content in large-macroaggregates. Pearson’s correlation analysis and random forest model analysis indicated that EK and NEK stocks in the large-macroaggregates were positively correlated with K uptake by rice and oilseed rape, which suggested that they were key factors influencing K uptake. Therefore, straw return increased Fep in large-macroaggregates to expand the K stock in soil and K uptake by crops under this field experiment conditions. Our results provided new insights with implications for improving soil K availability by straw return combined with K fertilization.</div></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"248 ","pages":"Article 106404"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Straw return combined with potassium fertilization improves potassium stocks in large-macroaggregates by increasing complex iron oxide under rice–oilseed rape rotation system\",\"authors\":\"Zhihao Xiong ,&nbsp;Ziyi Gao ,&nbsp;Jianwei Lu ,&nbsp;Yangyang Zhang ,&nbsp;Xiaokun Li\",\"doi\":\"10.1016/j.still.2024.106404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Potassium (K) supplementation strategies are required to enhance farm productivity in rice-upland rotations, where intensive cultivation practices often result in K deficiencies. Straw return improves the adsorption of K by increasing the content of soil humic acid in macroaggregates. Iron/aluminium (Fe/Al) oxides promote soil organic carbon storage and aggregate stability by acting as binding agents. However, limited information is available on the effects of Fe/Al oxides on the distribution of aggregate-associated K stocks. A field experiment was performed in the Yangtze River Basin, an area with low K stemming from intensive cultivation, with four fertilization treatments: inorganic nitrogen-phosphorus fertilizer (NP), (NPK), inorganic NP with straw return (NP+St), and inorganic NPK with straw return (NPK+St). Results showed that the straw return (NP+St), K fertilization (NPK) and the combination of both (NPK+St) increased soil exchangeable K content (EK) by 32.6 %, 23.7 % and 53.6 % in the rice season, respectively, and increased by 49.9 %, 25.5 % and 182.0 % in the oilseed rape season, respectively, compared with that of no K addition (NP) treatment. K stocks in macroaggregates accounted for more than 90 % of the total K stocks in all treatments. Straw return and K fertilization increased EK and non-exchangeable K (NEK) stocks in large-macroaggregates (&gt;2 mm) by increasing the aggregate-associated K content and regulating the abundance of aggregate. Redundancy analysis showed that complex iron oxide (Fep) was one of the main factors influencing soil available K. The NP+St and NPK+St treatments increased the proportion of particle size and K stocks by increasing the Fep content in large-macroaggregates. Pearson’s correlation analysis and random forest model analysis indicated that EK and NEK stocks in the large-macroaggregates were positively correlated with K uptake by rice and oilseed rape, which suggested that they were key factors influencing K uptake. Therefore, straw return increased Fep in large-macroaggregates to expand the K stock in soil and K uptake by crops under this field experiment conditions. Our results provided new insights with implications for improving soil K availability by straw return combined with K fertilization.</div></div>\",\"PeriodicalId\":49503,\"journal\":{\"name\":\"Soil & Tillage Research\",\"volume\":\"248 \",\"pages\":\"Article 106404\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil & Tillage Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167198724004057\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil & Tillage Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167198724004057","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

在水稻旱地轮作中,需要采取补钾策略来提高农业生产率,在旱地轮作中,精耕细作常常导致缺钾。秸秆还田通过增加土壤大团聚体中腐植酸的含量来促进对钾的吸附。铁/铝(Fe/Al)氧化物作为结合剂促进土壤有机碳的储存和团聚体的稳定性。然而,关于铁/铝氧化物对团聚体相关K元素分布的影响的信息有限。在长江流域精耕细作低钾地区,采用无机氮磷肥(NP)、无机氮磷肥(NPK)、无机氮磷肥配合秸秆还田(NP+St)和无机氮磷肥配合秸秆还田(NPK+St) 4种施肥处理进行田间试验。结果表明,秸秆还田(NP+St)、氮磷钾(NPK)及两者配施(NPK+St)在水稻季分别使土壤交换态钾含量(EK)提高了32.6 %、23.7 %和53.6 %,在油菜季分别比不施钾(NP)处理提高了49.9 %、25.5 %和182.0 %。各处理大团聚体K储量占总K储量的90% %以上。秸秆还田和施钾通过增加团聚体相关钾含量和调节团聚体丰度,增加了大-宏观团聚体(>2 mm)中EK和NEK储量。冗余分析表明,复合氧化铁(Fep)是影响土壤速效钾的主要因素之一。NP+St和NPK+St处理通过提高大团聚体中Fep含量,提高了粒径和K储量的比例。Pearson相关分析和随机森林模型分析表明,大-宏观团聚体中EK和NEK储量与水稻和油菜的钾吸收呈显著正相关,是影响钾吸收的关键因素。因此,在本大田试验条件下,秸秆还田增加了大-宏观团聚体Fep,扩大了土壤钾储量和作物对钾的吸收。本研究结果为秸秆还田配施钾肥提高土壤钾有效性提供了新的思路和启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Straw return combined with potassium fertilization improves potassium stocks in large-macroaggregates by increasing complex iron oxide under rice–oilseed rape rotation system
Potassium (K) supplementation strategies are required to enhance farm productivity in rice-upland rotations, where intensive cultivation practices often result in K deficiencies. Straw return improves the adsorption of K by increasing the content of soil humic acid in macroaggregates. Iron/aluminium (Fe/Al) oxides promote soil organic carbon storage and aggregate stability by acting as binding agents. However, limited information is available on the effects of Fe/Al oxides on the distribution of aggregate-associated K stocks. A field experiment was performed in the Yangtze River Basin, an area with low K stemming from intensive cultivation, with four fertilization treatments: inorganic nitrogen-phosphorus fertilizer (NP), (NPK), inorganic NP with straw return (NP+St), and inorganic NPK with straw return (NPK+St). Results showed that the straw return (NP+St), K fertilization (NPK) and the combination of both (NPK+St) increased soil exchangeable K content (EK) by 32.6 %, 23.7 % and 53.6 % in the rice season, respectively, and increased by 49.9 %, 25.5 % and 182.0 % in the oilseed rape season, respectively, compared with that of no K addition (NP) treatment. K stocks in macroaggregates accounted for more than 90 % of the total K stocks in all treatments. Straw return and K fertilization increased EK and non-exchangeable K (NEK) stocks in large-macroaggregates (>2 mm) by increasing the aggregate-associated K content and regulating the abundance of aggregate. Redundancy analysis showed that complex iron oxide (Fep) was one of the main factors influencing soil available K. The NP+St and NPK+St treatments increased the proportion of particle size and K stocks by increasing the Fep content in large-macroaggregates. Pearson’s correlation analysis and random forest model analysis indicated that EK and NEK stocks in the large-macroaggregates were positively correlated with K uptake by rice and oilseed rape, which suggested that they were key factors influencing K uptake. Therefore, straw return increased Fep in large-macroaggregates to expand the K stock in soil and K uptake by crops under this field experiment conditions. Our results provided new insights with implications for improving soil K availability by straw return combined with K fertilization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soil & Tillage Research
Soil & Tillage Research 农林科学-土壤科学
CiteScore
13.00
自引率
6.20%
发文量
266
审稿时长
5 months
期刊介绍: Soil & Tillage Research examines the physical, chemical and biological changes in the soil caused by tillage and field traffic. Manuscripts will be considered on aspects of soil science, physics, technology, mechanization and applied engineering for a sustainable balance among productivity, environmental quality and profitability. The following are examples of suitable topics within the scope of the journal of Soil and Tillage Research: The agricultural and biosystems engineering associated with tillage (including no-tillage, reduced-tillage and direct drilling), irrigation and drainage, crops and crop rotations, fertilization, rehabilitation of mine spoils and processes used to modify soils. Soil change effects on establishment and yield of crops, growth of plants and roots, structure and erosion of soil, cycling of carbon and nutrients, greenhouse gas emissions, leaching, runoff and other processes that affect environmental quality. Characterization or modeling of tillage and field traffic responses, soil, climate, or topographic effects, soil deformation processes, tillage tools, traction devices, energy requirements, economics, surface and subsurface water quality effects, tillage effects on weed, pest and disease control, and their interactions.
期刊最新文献
Design and evaluation of bio-inspired electro-osmosis system for reducing soil adhesion on agricultural equipment Effects of grazing on soil spatial heterogeneity depend on herbivore assemblages and components of heterogeneity Is the topsoil carbon sequestration potential underestimated of agricultural soils under best management? Microbial inoculants addition increases microbial necromass but decreases plant lignin contribution to soil organic carbon in rice paddies Characteristics and quantifications of soil acidification under different land uses and depths in northern subtropical China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1