利用极薄晶圆和填钼纳米狭缝通过硅孔的背面图案的宽松覆盖背面功率传输

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Electron Devices Pub Date : 2024-11-12 DOI:10.1109/TED.2024.3487080
P. Zhao;L. Witters;A. Jourdain;M. Stucchi;N. Jourdan;J. W. Maes;H. Bana;C. Zhu;R. Chukka;F. Sebaai;K. Vandersmissen;N. Heylen;D. Montero;S. Wang;K. D’Havé;F. Schleicher;J. De Vos;G. Beyer;A. Miller;E. Beyne
{"title":"利用极薄晶圆和填钼纳米狭缝通过硅孔的背面图案的宽松覆盖背面功率传输","authors":"P. Zhao;L. Witters;A. Jourdain;M. Stucchi;N. Jourdan;J. W. Maes;H. Bana;C. Zhu;R. Chukka;F. Sebaai;K. Vandersmissen;N. Heylen;D. Montero;S. Wang;K. D’Havé;F. Schleicher;J. De Vos;G. Beyer;A. Miller;E. Beyne","doi":"10.1109/TED.2024.3487080","DOIUrl":null,"url":null,"abstract":"Backside power delivery network (BSPDN) has gained much attention due to its potential to independently optimize signal and power routing. In this work, long slit nano through silicon vias (nTSVs) is used for high-density connections between frontside (FS)-patterned buried power rails (BPRs) and orthogonally patterned metal rails on the wafer backside (BS). These nTSVs are in situ patterned on top of BPR with self-alignment using FS lithography, and the length of the slits can also be tuned. This design relaxes overlay requirements for BS patterning that are typically stringent due to wafer grid distortions during bonding. Additionally, extreme wafer thinning stopping on a 10 nm Si0.75Ge0.25 etch stop layer (ESL) is enabled using an optimized thinning sequence with excellent total thickness variation (TTV) control. For the first time, low resistance barrier-free Molybdenum (Mo)-filled nTSVs are demonstrated, confirming the potential for further scaling compared to TiN/W-filled counterparts.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"71 12","pages":"7963-7969"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Backside Power Delivery With Relaxed Overlay for Backside Patterning Using Extreme Wafer Thinning and Molybdenum-Filled Slit Nano Through Silicon Vias\",\"authors\":\"P. Zhao;L. Witters;A. Jourdain;M. Stucchi;N. Jourdan;J. W. Maes;H. Bana;C. Zhu;R. Chukka;F. Sebaai;K. Vandersmissen;N. Heylen;D. Montero;S. Wang;K. D’Havé;F. Schleicher;J. De Vos;G. Beyer;A. Miller;E. Beyne\",\"doi\":\"10.1109/TED.2024.3487080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Backside power delivery network (BSPDN) has gained much attention due to its potential to independently optimize signal and power routing. In this work, long slit nano through silicon vias (nTSVs) is used for high-density connections between frontside (FS)-patterned buried power rails (BPRs) and orthogonally patterned metal rails on the wafer backside (BS). These nTSVs are in situ patterned on top of BPR with self-alignment using FS lithography, and the length of the slits can also be tuned. This design relaxes overlay requirements for BS patterning that are typically stringent due to wafer grid distortions during bonding. Additionally, extreme wafer thinning stopping on a 10 nm Si0.75Ge0.25 etch stop layer (ESL) is enabled using an optimized thinning sequence with excellent total thickness variation (TTV) control. For the first time, low resistance barrier-free Molybdenum (Mo)-filled nTSVs are demonstrated, confirming the potential for further scaling compared to TiN/W-filled counterparts.\",\"PeriodicalId\":13092,\"journal\":{\"name\":\"IEEE Transactions on Electron Devices\",\"volume\":\"71 12\",\"pages\":\"7963-7969\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electron Devices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10750445/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10750445/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

后向输电网络(BSPDN)由于具有独立优化信号和电力路由的潜力而备受关注。在这项工作中,长狭缝纳米硅通孔(ntsv)被用于在晶圆背面(BS)上的垂直图案金属轨(FS)和正面(FS)图案埋地电源轨(bpr)之间的高密度连接。这些ntsv使用FS光刻技术在BPR顶部进行自对准,并且狭缝的长度也可以调整。这种设计放宽了对BS图案的覆盖要求,因为在粘合过程中晶圆网格扭曲通常是严格的。此外,在10 nm Si0.75Ge0.25蚀刻停止层(ESL)上的极端晶圆薄化停止使用优化的薄化序列,具有出色的总厚度变化(TTV)控制。首次展示了低电阻无障碍钼(Mo)填充的ntsv,与TiN/ w填充的ntsv相比,证实了其进一步结垢的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Backside Power Delivery With Relaxed Overlay for Backside Patterning Using Extreme Wafer Thinning and Molybdenum-Filled Slit Nano Through Silicon Vias
Backside power delivery network (BSPDN) has gained much attention due to its potential to independently optimize signal and power routing. In this work, long slit nano through silicon vias (nTSVs) is used for high-density connections between frontside (FS)-patterned buried power rails (BPRs) and orthogonally patterned metal rails on the wafer backside (BS). These nTSVs are in situ patterned on top of BPR with self-alignment using FS lithography, and the length of the slits can also be tuned. This design relaxes overlay requirements for BS patterning that are typically stringent due to wafer grid distortions during bonding. Additionally, extreme wafer thinning stopping on a 10 nm Si0.75Ge0.25 etch stop layer (ESL) is enabled using an optimized thinning sequence with excellent total thickness variation (TTV) control. For the first time, low resistance barrier-free Molybdenum (Mo)-filled nTSVs are demonstrated, confirming the potential for further scaling compared to TiN/W-filled counterparts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
期刊最新文献
Table of Contents IEEE ELECTRON DEVICES SOCIETY IEEE Transactions on Electron Devices Information for Authors Advanced Bragg Resonator Integration for Enhanced Bandwidth and Stability in G-Band TWT With Staggered Double Vane Structure In-Circuit Inductance Measurement to Correct the Single-Pulse Avalanche Energy (Eas) of Transistor Under the Unclamped Inductive-Switching (UIS) Test
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1