{"title":"基于ml的自主移动机器人对接与运输嵌入式机架检测软件","authors":"Sunghoon Hong;Daejin Park","doi":"10.1109/LES.2024.3442927","DOIUrl":null,"url":null,"abstract":"Autonomous mobile robots (AMRs) are widely used in dynamic warehouse environments for automated material handling, which is one of the fundamental parts of building intelligent logistics systems. A target docking system to transport materials, such as racks, carts, and pallets is an important technology for AMRs that directly affects production efficiency. In this letter, we propose a fast and precise rack detection algorithm based on 2-D LiDAR data for AMRs that consume power from batteries. This novel detection method based on machine learning to quickly detect various racks in a dynamic environment consists of three modules: first classification, secondary classification, and multiple-matching-based 2-D point cloud registration. We conducted various experiments to verify the rack detection performance of the existing and proposed methods in a low-power embedded system. As a result, the relative pose accuracy is improved and the inference speed is increased by about 3 times, which shows that the proposed method has faster inference speed while reducing the relative pose error.","PeriodicalId":56143,"journal":{"name":"IEEE Embedded Systems Letters","volume":"16 4","pages":"401-404"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ML-Based Fast and Precise Embedded Rack Detection Software for Docking and Transport of Autonomous Mobile Robots Using 2-D LiDAR\",\"authors\":\"Sunghoon Hong;Daejin Park\",\"doi\":\"10.1109/LES.2024.3442927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous mobile robots (AMRs) are widely used in dynamic warehouse environments for automated material handling, which is one of the fundamental parts of building intelligent logistics systems. A target docking system to transport materials, such as racks, carts, and pallets is an important technology for AMRs that directly affects production efficiency. In this letter, we propose a fast and precise rack detection algorithm based on 2-D LiDAR data for AMRs that consume power from batteries. This novel detection method based on machine learning to quickly detect various racks in a dynamic environment consists of three modules: first classification, secondary classification, and multiple-matching-based 2-D point cloud registration. We conducted various experiments to verify the rack detection performance of the existing and proposed methods in a low-power embedded system. As a result, the relative pose accuracy is improved and the inference speed is increased by about 3 times, which shows that the proposed method has faster inference speed while reducing the relative pose error.\",\"PeriodicalId\":56143,\"journal\":{\"name\":\"IEEE Embedded Systems Letters\",\"volume\":\"16 4\",\"pages\":\"401-404\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Embedded Systems Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10779590/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Embedded Systems Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10779590/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
ML-Based Fast and Precise Embedded Rack Detection Software for Docking and Transport of Autonomous Mobile Robots Using 2-D LiDAR
Autonomous mobile robots (AMRs) are widely used in dynamic warehouse environments for automated material handling, which is one of the fundamental parts of building intelligent logistics systems. A target docking system to transport materials, such as racks, carts, and pallets is an important technology for AMRs that directly affects production efficiency. In this letter, we propose a fast and precise rack detection algorithm based on 2-D LiDAR data for AMRs that consume power from batteries. This novel detection method based on machine learning to quickly detect various racks in a dynamic environment consists of three modules: first classification, secondary classification, and multiple-matching-based 2-D point cloud registration. We conducted various experiments to verify the rack detection performance of the existing and proposed methods in a low-power embedded system. As a result, the relative pose accuracy is improved and the inference speed is increased by about 3 times, which shows that the proposed method has faster inference speed while reducing the relative pose error.
期刊介绍:
The IEEE Embedded Systems Letters (ESL), provides a forum for rapid dissemination of latest technical advances in embedded systems and related areas in embedded software. The emphasis is on models, methods, and tools that ensure secure, correct, efficient and robust design of embedded systems and their applications.