基于启发式优化的多dnn工作负载异构加速器设计

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Embedded Systems Letters Pub Date : 2024-12-05 DOI:10.1109/LES.2024.3443628
Konstantinos Balaskas;Heba Khdr;Mohammed Bakr Sikal;Fabian Kreß;Kostas Siozios;Jürgen Becker;Jörg Henkel
{"title":"基于启发式优化的多dnn工作负载异构加速器设计","authors":"Konstantinos Balaskas;Heba Khdr;Mohammed Bakr Sikal;Fabian Kreß;Kostas Siozios;Jürgen Becker;Jörg Henkel","doi":"10.1109/LES.2024.3443628","DOIUrl":null,"url":null,"abstract":"The significant advancements of deep neural networks (DNNs) in a wide range of application domains have spawned the need for more specialized, sophisticated solutions in the form of multi-DNN workloads. Heterogeneous DNN accelerators have emerged as an elegant solution to tackle the workloads’ inherent diversity, achieving significant improvements compared to homogeneous solutions. However, utilizing off-the-shelf architectures provides suboptimal adaptability to given workloads, whereas custom design approaches offer limited heterogeneity, and thus reduced gains. In this letter, we combat these shortcomings and propose an exploration-based framework to holistically design heterogeneous accelerators, tailored for multi-DNN workloads. Our framework is workload-agnostic and leverages architectural heterogeneity to its full potential, by integrating low-precision arithmetic and custom structural parameters. We explore the formed design space, targeting to minimize the system’s energy-delay product (EDP) via heuristic techniques. Our proposed accelerators achieve, on average, a significant \n<inline-formula> <tex-math>$5.5\\times $ </tex-math></inline-formula>\n reduction in EDP compared to the state of the art across various multi-DNN workloads.","PeriodicalId":56143,"journal":{"name":"IEEE Embedded Systems Letters","volume":"16 4","pages":"317-320"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterogeneous Accelerator Design for Multi-DNN Workloads via Heuristic Optimization\",\"authors\":\"Konstantinos Balaskas;Heba Khdr;Mohammed Bakr Sikal;Fabian Kreß;Kostas Siozios;Jürgen Becker;Jörg Henkel\",\"doi\":\"10.1109/LES.2024.3443628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The significant advancements of deep neural networks (DNNs) in a wide range of application domains have spawned the need for more specialized, sophisticated solutions in the form of multi-DNN workloads. Heterogeneous DNN accelerators have emerged as an elegant solution to tackle the workloads’ inherent diversity, achieving significant improvements compared to homogeneous solutions. However, utilizing off-the-shelf architectures provides suboptimal adaptability to given workloads, whereas custom design approaches offer limited heterogeneity, and thus reduced gains. In this letter, we combat these shortcomings and propose an exploration-based framework to holistically design heterogeneous accelerators, tailored for multi-DNN workloads. Our framework is workload-agnostic and leverages architectural heterogeneity to its full potential, by integrating low-precision arithmetic and custom structural parameters. We explore the formed design space, targeting to minimize the system’s energy-delay product (EDP) via heuristic techniques. Our proposed accelerators achieve, on average, a significant \\n<inline-formula> <tex-math>$5.5\\\\times $ </tex-math></inline-formula>\\n reduction in EDP compared to the state of the art across various multi-DNN workloads.\",\"PeriodicalId\":56143,\"journal\":{\"name\":\"IEEE Embedded Systems Letters\",\"volume\":\"16 4\",\"pages\":\"317-320\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Embedded Systems Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10779973/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Embedded Systems Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10779973/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

深度神经网络(dnn)在广泛应用领域的重大进步催生了对多深度神经网络工作负载形式的更专业、更复杂的解决方案的需求。异构DNN加速器已经成为解决工作负载固有多样性的优雅解决方案,与同构解决方案相比,实现了显着改进。然而,利用现成的体系结构提供了对给定工作负载的次优适应性,而定制设计方法提供了有限的异构性,从而降低了收益。在这封信中,我们克服了这些缺点,并提出了一个基于探索的框架来整体设计异构加速器,为多深度神经网络工作负载量身定制。我们的框架与工作负载无关,通过集成低精度算法和自定义结构参数,充分利用了体系结构的异构性。我们探索形成的设计空间,目标是通过启发式技术最小化系统的能量延迟积(EDP)。与各种多dnn工作负载的最先进技术相比,我们提出的加速器平均实现了5.5倍的EDP降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heterogeneous Accelerator Design for Multi-DNN Workloads via Heuristic Optimization
The significant advancements of deep neural networks (DNNs) in a wide range of application domains have spawned the need for more specialized, sophisticated solutions in the form of multi-DNN workloads. Heterogeneous DNN accelerators have emerged as an elegant solution to tackle the workloads’ inherent diversity, achieving significant improvements compared to homogeneous solutions. However, utilizing off-the-shelf architectures provides suboptimal adaptability to given workloads, whereas custom design approaches offer limited heterogeneity, and thus reduced gains. In this letter, we combat these shortcomings and propose an exploration-based framework to holistically design heterogeneous accelerators, tailored for multi-DNN workloads. Our framework is workload-agnostic and leverages architectural heterogeneity to its full potential, by integrating low-precision arithmetic and custom structural parameters. We explore the formed design space, targeting to minimize the system’s energy-delay product (EDP) via heuristic techniques. Our proposed accelerators achieve, on average, a significant $5.5\times $ reduction in EDP compared to the state of the art across various multi-DNN workloads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Embedded Systems Letters
IEEE Embedded Systems Letters Engineering-Control and Systems Engineering
CiteScore
3.30
自引率
0.00%
发文量
65
期刊介绍: The IEEE Embedded Systems Letters (ESL), provides a forum for rapid dissemination of latest technical advances in embedded systems and related areas in embedded software. The emphasis is on models, methods, and tools that ensure secure, correct, efficient and robust design of embedded systems and their applications.
期刊最新文献
Table of Contents Editorial IEEE Embedded Systems Letters Publication Information ViTSen: Bridging Vision Transformers and Edge Computing With Advanced In/Near-Sensor Processing Methodology for Formal Verification of Hardware Safety Strategies Using SMT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1