Konstantinos Balaskas;Heba Khdr;Mohammed Bakr Sikal;Fabian Kreß;Kostas Siozios;Jürgen Becker;Jörg Henkel
{"title":"基于启发式优化的多dnn工作负载异构加速器设计","authors":"Konstantinos Balaskas;Heba Khdr;Mohammed Bakr Sikal;Fabian Kreß;Kostas Siozios;Jürgen Becker;Jörg Henkel","doi":"10.1109/LES.2024.3443628","DOIUrl":null,"url":null,"abstract":"The significant advancements of deep neural networks (DNNs) in a wide range of application domains have spawned the need for more specialized, sophisticated solutions in the form of multi-DNN workloads. Heterogeneous DNN accelerators have emerged as an elegant solution to tackle the workloads’ inherent diversity, achieving significant improvements compared to homogeneous solutions. However, utilizing off-the-shelf architectures provides suboptimal adaptability to given workloads, whereas custom design approaches offer limited heterogeneity, and thus reduced gains. In this letter, we combat these shortcomings and propose an exploration-based framework to holistically design heterogeneous accelerators, tailored for multi-DNN workloads. Our framework is workload-agnostic and leverages architectural heterogeneity to its full potential, by integrating low-precision arithmetic and custom structural parameters. We explore the formed design space, targeting to minimize the system’s energy-delay product (EDP) via heuristic techniques. Our proposed accelerators achieve, on average, a significant \n<inline-formula> <tex-math>$5.5\\times $ </tex-math></inline-formula>\n reduction in EDP compared to the state of the art across various multi-DNN workloads.","PeriodicalId":56143,"journal":{"name":"IEEE Embedded Systems Letters","volume":"16 4","pages":"317-320"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterogeneous Accelerator Design for Multi-DNN Workloads via Heuristic Optimization\",\"authors\":\"Konstantinos Balaskas;Heba Khdr;Mohammed Bakr Sikal;Fabian Kreß;Kostas Siozios;Jürgen Becker;Jörg Henkel\",\"doi\":\"10.1109/LES.2024.3443628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The significant advancements of deep neural networks (DNNs) in a wide range of application domains have spawned the need for more specialized, sophisticated solutions in the form of multi-DNN workloads. Heterogeneous DNN accelerators have emerged as an elegant solution to tackle the workloads’ inherent diversity, achieving significant improvements compared to homogeneous solutions. However, utilizing off-the-shelf architectures provides suboptimal adaptability to given workloads, whereas custom design approaches offer limited heterogeneity, and thus reduced gains. In this letter, we combat these shortcomings and propose an exploration-based framework to holistically design heterogeneous accelerators, tailored for multi-DNN workloads. Our framework is workload-agnostic and leverages architectural heterogeneity to its full potential, by integrating low-precision arithmetic and custom structural parameters. We explore the formed design space, targeting to minimize the system’s energy-delay product (EDP) via heuristic techniques. Our proposed accelerators achieve, on average, a significant \\n<inline-formula> <tex-math>$5.5\\\\times $ </tex-math></inline-formula>\\n reduction in EDP compared to the state of the art across various multi-DNN workloads.\",\"PeriodicalId\":56143,\"journal\":{\"name\":\"IEEE Embedded Systems Letters\",\"volume\":\"16 4\",\"pages\":\"317-320\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Embedded Systems Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10779973/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Embedded Systems Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10779973/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Heterogeneous Accelerator Design for Multi-DNN Workloads via Heuristic Optimization
The significant advancements of deep neural networks (DNNs) in a wide range of application domains have spawned the need for more specialized, sophisticated solutions in the form of multi-DNN workloads. Heterogeneous DNN accelerators have emerged as an elegant solution to tackle the workloads’ inherent diversity, achieving significant improvements compared to homogeneous solutions. However, utilizing off-the-shelf architectures provides suboptimal adaptability to given workloads, whereas custom design approaches offer limited heterogeneity, and thus reduced gains. In this letter, we combat these shortcomings and propose an exploration-based framework to holistically design heterogeneous accelerators, tailored for multi-DNN workloads. Our framework is workload-agnostic and leverages architectural heterogeneity to its full potential, by integrating low-precision arithmetic and custom structural parameters. We explore the formed design space, targeting to minimize the system’s energy-delay product (EDP) via heuristic techniques. Our proposed accelerators achieve, on average, a significant
$5.5\times $
reduction in EDP compared to the state of the art across various multi-DNN workloads.
期刊介绍:
The IEEE Embedded Systems Letters (ESL), provides a forum for rapid dissemination of latest technical advances in embedded systems and related areas in embedded software. The emphasis is on models, methods, and tools that ensure secure, correct, efficient and robust design of embedded systems and their applications.