{"title":"基于侧信道功率分析的嵌入式设备运行时ROP攻击检测","authors":"Jinyao Xu;Danny Abraham;Ian G. Harris","doi":"10.1109/LES.2024.3445256","DOIUrl":null,"url":null,"abstract":"Return-oriented programming (ROP) have emerged as great threats to the modern embedded systems. ROP attacks can be used to either bypass credential verification or modify RAM contents. In this letter, we introduce a simple side-channel technique for the run-time ROP detection. We use processors’ power consumption pattern as an indicator for the potential ROP attacks, which can be deployed across different platforms. We avoid the computational complexities of training machine learning models by using a simple linear comparison algorithm to compare the known and unknown power patterns to discern anomalies. For evaluation, we implement both the ROP attacks in multiple scenarios on the benchmarks with various complexity levels. We demonstrate the robustness of our approach and also outline some potential overheads that the approach incurs for the run-time ROP detection.","PeriodicalId":56143,"journal":{"name":"IEEE Embedded Systems Letters","volume":"16 4","pages":"377-380"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Run-Time ROP Attack Detection on Embedded Devices Using Side Channel Power Analysis\",\"authors\":\"Jinyao Xu;Danny Abraham;Ian G. Harris\",\"doi\":\"10.1109/LES.2024.3445256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Return-oriented programming (ROP) have emerged as great threats to the modern embedded systems. ROP attacks can be used to either bypass credential verification or modify RAM contents. In this letter, we introduce a simple side-channel technique for the run-time ROP detection. We use processors’ power consumption pattern as an indicator for the potential ROP attacks, which can be deployed across different platforms. We avoid the computational complexities of training machine learning models by using a simple linear comparison algorithm to compare the known and unknown power patterns to discern anomalies. For evaluation, we implement both the ROP attacks in multiple scenarios on the benchmarks with various complexity levels. We demonstrate the robustness of our approach and also outline some potential overheads that the approach incurs for the run-time ROP detection.\",\"PeriodicalId\":56143,\"journal\":{\"name\":\"IEEE Embedded Systems Letters\",\"volume\":\"16 4\",\"pages\":\"377-380\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Embedded Systems Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10779978/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Embedded Systems Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10779978/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Run-Time ROP Attack Detection on Embedded Devices Using Side Channel Power Analysis
Return-oriented programming (ROP) have emerged as great threats to the modern embedded systems. ROP attacks can be used to either bypass credential verification or modify RAM contents. In this letter, we introduce a simple side-channel technique for the run-time ROP detection. We use processors’ power consumption pattern as an indicator for the potential ROP attacks, which can be deployed across different platforms. We avoid the computational complexities of training machine learning models by using a simple linear comparison algorithm to compare the known and unknown power patterns to discern anomalies. For evaluation, we implement both the ROP attacks in multiple scenarios on the benchmarks with various complexity levels. We demonstrate the robustness of our approach and also outline some potential overheads that the approach incurs for the run-time ROP detection.
期刊介绍:
The IEEE Embedded Systems Letters (ESL), provides a forum for rapid dissemination of latest technical advances in embedded systems and related areas in embedded software. The emphasis is on models, methods, and tools that ensure secure, correct, efficient and robust design of embedded systems and their applications.