MetaTinyML: TinyML平台的端到端元推理框架

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Embedded Systems Letters Pub Date : 2024-12-05 DOI:10.1109/LES.2024.3446948
Mozhgan Navardi;Edward Humes;Tinoosh Mohsenin
{"title":"MetaTinyML: TinyML平台的端到端元推理框架","authors":"Mozhgan Navardi;Edward Humes;Tinoosh Mohsenin","doi":"10.1109/LES.2024.3446948","DOIUrl":null,"url":null,"abstract":"Efficiently deploying deep neural networks on resource-limited embedded systems is crucial to meet real-time and power consumption requirements. Utilizing metareasoning as a higher-level controller along with tiny machine learning (TinyML) can enhance energy efficiency and reduce latency on such systems by overseeing available resources. This study introduces MetaTinyML, a comprehensive metareasoning framework for self-guided navigation on TinyML platforms. The framework adapts its decision-making process by factoring in environmental changes to select the most suitable algorithms for the current scenario. Implementation of MetaTinyML on an NVIDIA Jetson Nano 4-GB system integrated with a Jetbot ground vehicle demonstrated up to 50% power consumption enhancement. View a video demonstration of the MetaTinyML framework at: Video.","PeriodicalId":56143,"journal":{"name":"IEEE Embedded Systems Letters","volume":"16 4","pages":"393-396"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MetaTinyML: End-to-End Metareasoning Framework for TinyML Platforms\",\"authors\":\"Mozhgan Navardi;Edward Humes;Tinoosh Mohsenin\",\"doi\":\"10.1109/LES.2024.3446948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficiently deploying deep neural networks on resource-limited embedded systems is crucial to meet real-time and power consumption requirements. Utilizing metareasoning as a higher-level controller along with tiny machine learning (TinyML) can enhance energy efficiency and reduce latency on such systems by overseeing available resources. This study introduces MetaTinyML, a comprehensive metareasoning framework for self-guided navigation on TinyML platforms. The framework adapts its decision-making process by factoring in environmental changes to select the most suitable algorithms for the current scenario. Implementation of MetaTinyML on an NVIDIA Jetson Nano 4-GB system integrated with a Jetbot ground vehicle demonstrated up to 50% power consumption enhancement. View a video demonstration of the MetaTinyML framework at: Video.\",\"PeriodicalId\":56143,\"journal\":{\"name\":\"IEEE Embedded Systems Letters\",\"volume\":\"16 4\",\"pages\":\"393-396\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Embedded Systems Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10779983/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Embedded Systems Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10779983/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

在资源有限的嵌入式系统上高效部署深度神经网络对于满足实时性和功耗要求至关重要。利用元推理作为高级控制器以及微型机器学习(TinyML)可以通过监督可用资源来提高能源效率并减少此类系统的延迟。本研究介绍了一个在TinyML平台上用于自引导导航的综合元推理框架MetaTinyML。该框架通过考虑环境变化来调整其决策过程,以选择最适合当前场景的算法。MetaTinyML在与Jetbot地面车辆集成的NVIDIA Jetson Nano 4-GB系统上的实现显示出高达50%的功耗增强。查看MetaTinyML框架的视频演示:video。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MetaTinyML: End-to-End Metareasoning Framework for TinyML Platforms
Efficiently deploying deep neural networks on resource-limited embedded systems is crucial to meet real-time and power consumption requirements. Utilizing metareasoning as a higher-level controller along with tiny machine learning (TinyML) can enhance energy efficiency and reduce latency on such systems by overseeing available resources. This study introduces MetaTinyML, a comprehensive metareasoning framework for self-guided navigation on TinyML platforms. The framework adapts its decision-making process by factoring in environmental changes to select the most suitable algorithms for the current scenario. Implementation of MetaTinyML on an NVIDIA Jetson Nano 4-GB system integrated with a Jetbot ground vehicle demonstrated up to 50% power consumption enhancement. View a video demonstration of the MetaTinyML framework at: Video.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Embedded Systems Letters
IEEE Embedded Systems Letters Engineering-Control and Systems Engineering
CiteScore
3.30
自引率
0.00%
发文量
65
期刊介绍: The IEEE Embedded Systems Letters (ESL), provides a forum for rapid dissemination of latest technical advances in embedded systems and related areas in embedded software. The emphasis is on models, methods, and tools that ensure secure, correct, efficient and robust design of embedded systems and their applications.
期刊最新文献
Table of Contents Editorial IEEE Embedded Systems Letters Publication Information ViTSen: Bridging Vision Transformers and Edge Computing With Advanced In/Near-Sensor Processing Methodology for Formal Verification of Hardware Safety Strategies Using SMT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1